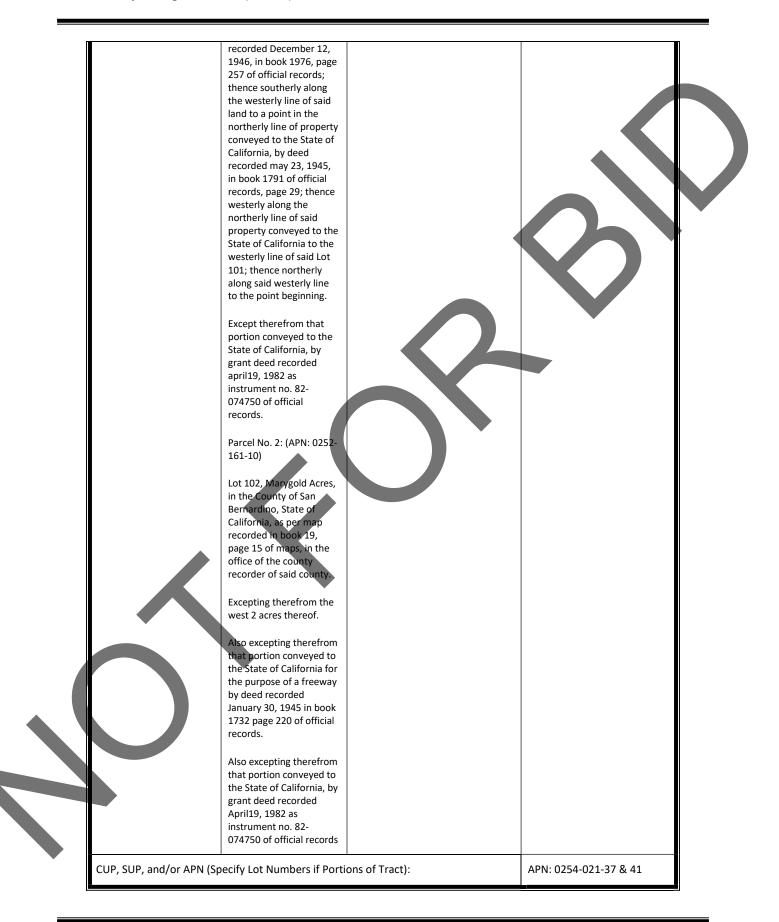


Project Owner's Certification

This Water Quality Management Plan (WQMP) has been prepared for San Bernardino County by Bonadiman & Associates, Inc. The WQMP is intended to comply with the requirements of the San Bernardino County and the NPDES Area wide Stormwater Program requiring the preparation of a WQMP. The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with San Bernardino County's Municipal Storm Water Management Program and the intent of the NPDES Permit for San Bernardino County and the incorporated cities of San Bernardino County within the Santa Ana Region. Once the undersigned transfers its interest in the property, its successors in interest and the city/county shall be notified of the transfer. The new owner will be informed of its responsibility under this WQMP. A copy of the approved WQMP shall be available on the subject site in perpetuity.

"I certify under a penalty of law that the provisions (implementation, operation, maintenance, and funding) of the WQMP have been accepted and that the plan will be transferred to future successors."


		Project Data	
Permit/Application Number(s):	T.B.D.	Grading Permit Number(s):	T.B.D.
Tract/Parcel Map Number(s):	All that certain real property situated in the County of San Bernardino, State of Galifornia, described as folfows: Parcel No. 1: (APN: 0252- 161-09) That portion of lot 101, of the subdivision of Marygold Acres, in the County of San Bernardino, State of California, as per map recorded in book 19, page 15 of maps, in the office of the county recorder of said county, described as follows: Beginning at the northwest corner of said Lot 101; thence easterly along the northerly line of said lot, 111 feet to the northwest corner of the land conveyed to V. K. Auxier, et ux., by deed	Building Permit Number(s):	T.B.D.

	Owner's Signature							
Owner: San Be	ernardino County							
Title	Sr. Project Manager							
Representative	Kenneth Hylin							
Address	385 N. Arrowhead Ave., 3 rd Floor							
Email	Kenneth.hylin@pfm.sbcounty.gov							
Telephone #	(909) 387-5000							
Signature		Date						

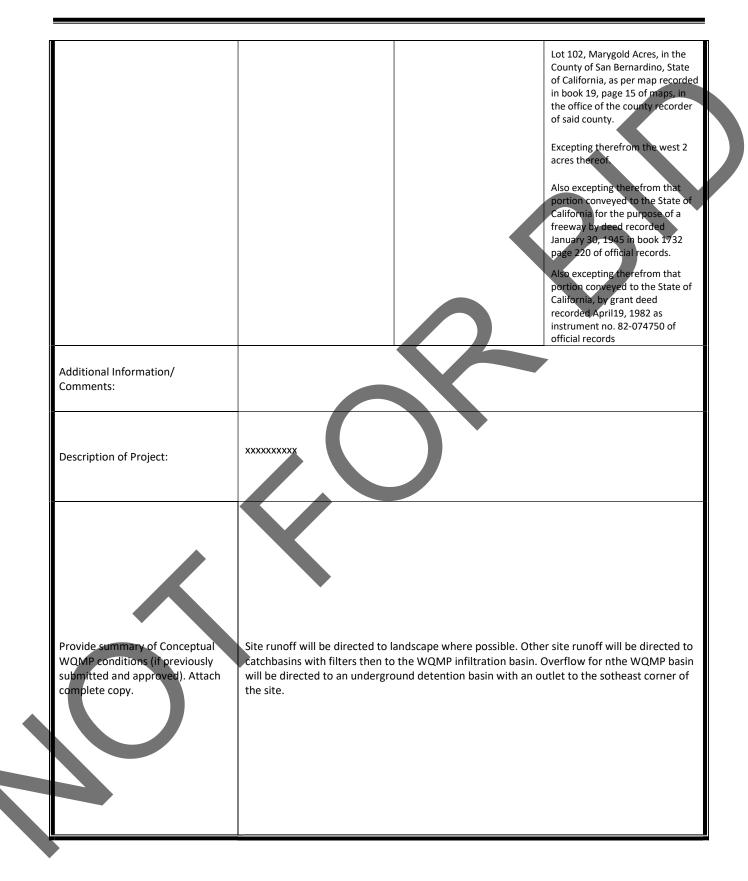
Preparer's Certification

	Pr	oject Data	
Permit/Application Number(s):	T.B.D.	Grading Permit Number(s):	T.B.D.
Tract/Parcel Map Number(s):	All that certain real property situated in the County of San Bernardino, State of California, described as follows: Parcel No. 1: (APN: 0252- 161-09) That portion of lot 101, of the subdivision of Marygold Acres, in the County of San Bernardino, State of California, as per map recorded in book 19, page 15 of maps, in the office of the county recorder of said county, described as follows: Beginning at the northwest corner of said Lot 101; thence easterly along the northerly line of said lot, 111 feet to the northwest corner of the land conveyed to V. K. Auxier, et ux., by deed	Building Permit Number(s):	T.B.D.

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan were prepared under my oversight and meet the requirements of Regional Water Quality Control Board Order No. R8-2010-0036."

Engineer: Ja	ames T. Stanton	PE Stamp Below
Title	Vice President of Engineering	PROFESSION
Company	Joseph E. Bonadiman & Associates, Inc.	
Address	234 North Arrowhead Avenue San Bernardino, CA 92408	No. C-70944 Exp. 6-30-23 ★
Email	jts@bonadiman.com	GF CALIFORN
Telephone #	(909) 885-3806	
Signature	J. Jan	
Date	08-07-23	

Table of Contents


Section 1	Discretionary Permits	1-1
Section 2 I	Project Description	2-1
	2.1 Project Information 2.2 Property Ownership / Management	2-1 2-2
	2.3 Potential Stormwater Pollutants 2.4 Water Quality Credits	2-3 2-4
		3-1
	Best Management Practices	4-1
	4.1 Source Control BMP	4-1
	4.1.1 Pollution Prevention	4-1
	4.1.2 Preventative LID Site Design Practices	4-6
	4.2 Project Performance Criteria	4-7
	4.3 Project Conformance Analysis	4-12
	4.3.1 Site Design Hydrologic Source Control BMP	4-14
	4.3.2 Infiltration BMP	4-16
	4.3.3 Harvest and Use BMP	4-18
	4.3.4 Biotreatment BMP 4.3.5 Conformance Summary	4.19
	4.3.6 Hydromodification Control BMP	4-23 4-24
	4.4 Alternative Compliance Plan (if applicable)	4-25 4-25
Section 5	Inspection & Maintenance Responsibility Post Construction BMPs	5-1
Section 6	WQMP Attachments	6-1
	6.1 Site Plan and Drainage Plan	6-1
	6.2 Electronic Data Submittal	6-2
	6.3 Post Construction	6-3
	6.4 Other Supporting Documentation	6-4

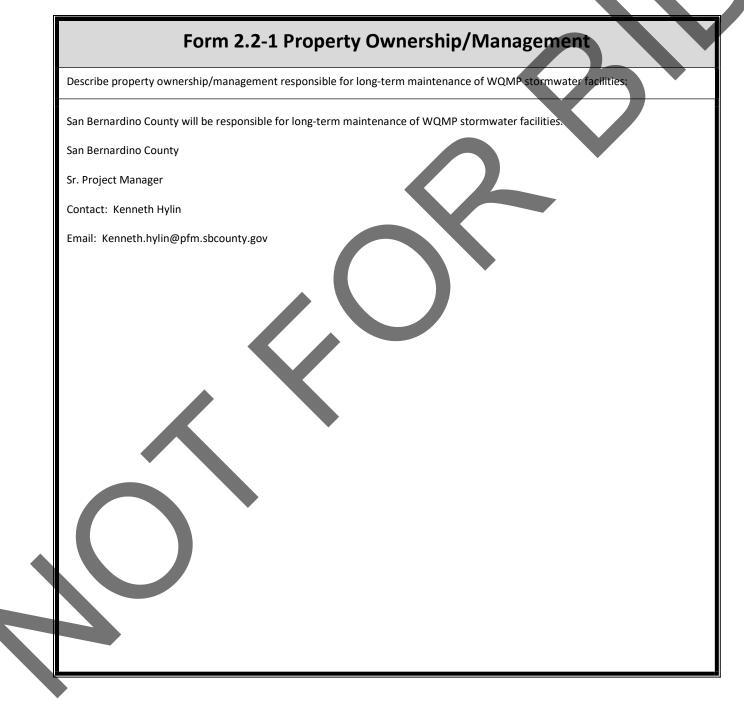
Forms

Form 1-1 Project Information	1-1
Form 2.1-1 Description of Proposed Project	2-1
Form 2.2-1 Property Ownership/Management	2-2
Form 2.3-1 Pollutants of Concern	2-3
Form 2.4-1 Water Quality Credits	2-4
Form 3-1 Site Location and Hydrologic Features	3-1
Form 3-2 Hydrologic Characteristics	3-2
Form 3-3 Watershed Description	3-3
Form 4.1-1 Non-Structural Source Control BMP	4-2
Form 4.1-2 Structural Source Control BMP	4-4
Form 4.1-3 Site Design Practices Checklist	4-6
	4-7
Form 4.2-2 Summary of HCOC Assessment	4-8
Form 4.2-3 HCOC Assessment for Runoff Volume	4-9
Form 4.2-4 HCOC Assessment for Time of Concentration	4-10
	4-11
	4-13
	4-14
Form 4.3-3 Infiltration LID BMP	4-17
Form 4.3-4 Harvest and Use BMP	4-18
Form 4.3-5 Selection and Evaluation of Biotreatment BMP	4-19
Form 4.3-6 Volume Based Biotreatment – Bioretention and Planter Boxes w/Underdrains	4-20
	4-21
Form 4.3-8 Flow Based Biotreatment	4-22
Form 4.3-9 Conformance Summary and Alternative Compliance Volume Estimate	4-23
Form 4.3-10 Hydromodification Control BMP	4-24
Form 5-1 BMP Inspection and Maintenance	5-1

Section 1 Discretionary Permit(s)

	Form 1-1 Project Information 18313 Valley Blvd.				
Project Name					
Project Owner Contact Name:	Kenneth Hylin				
Mailing Address: 385 N. Arrowhead Ave., 3	3rd Floor	E-mail Address:	Kenneth.hylin@pfm.sbcounty. gov	Telephone: (909) 387-5000	
Permit/Application Number(s):	T.B.D.		Tract/Parcel Map Number(s):	All that certain real property situated in the County of San Bernardino, State of California, described as follows: Parcel No. 1: (APN: 0252-161-09 That portion of lot 101, of the subdivision of Marygold Acres, i the County of San Bernardino, State of California, as per map recorded in book 19, page 15 of maps, in the office of the county recorder of said county, described as follows: Beginning at the northwest corner of said Lot 101; thence easterly along the northerly line of said lot, 111 feet to the northwest corner of the land conveyed to V. K. Auxier, et ux., by deed recorded December 12 1946, in book 1976, page 257 of official records; thence southerl along the westerly line of said land to a point in the northerly line of property conveyed to the State of California, by deed recorded may 23, 1945, in book 1791 of official records, page 29 thence westerly along the northerly line of said property conveyed to the State of California to the westerly line of said Lot 101; thence northerly along said westerly line to the point beginning. Except therefrom that portion conveyed to the State of California, by grant deed recorded april19, 1982 as instrument no. 82-074750 of official records. Parcel No. 2: (APN: 0252-161-100	

Section 2 Project Description 2.1 Project Information

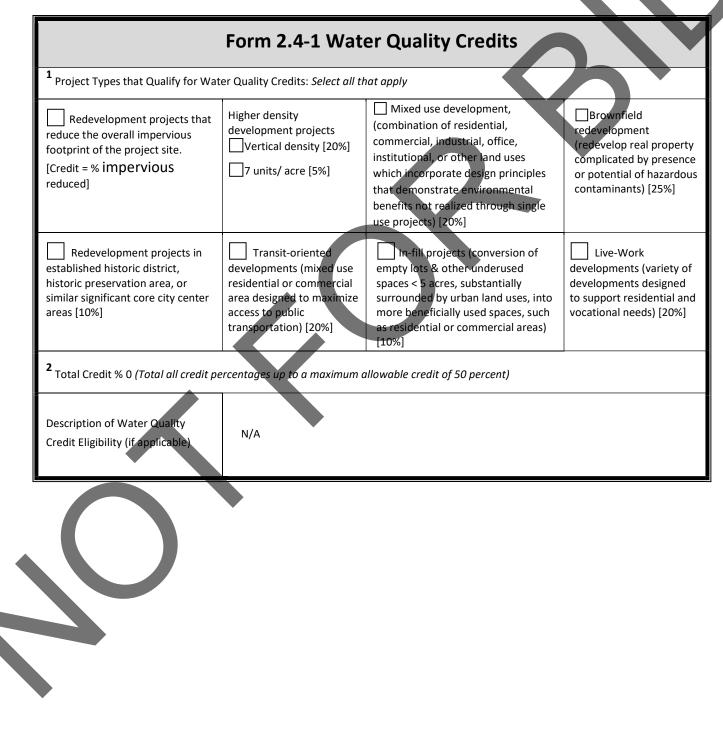

This section of the WQMP should provide the information listed below. The information provided for Conceptual/ Preliminary WQMP should give sufficient detail to identify the major proposed site design and LID BMPs and other anticipated water quality features that impact site planning. Final Project WQMP must specifically identify all BMP incorporated into the final site design and provide other detailed information as described herein.

The purpose of this information is to help determine the applicable development category, pollutants of concern, watershed description, and long term maintenance responsibilities for the project, and any applicable water quality credits. This information will be used in conjunction with the information in Section 3, Site Description, to establish the performance criteria and to select the LID BMP or other BMP for the project or other alternative programs that the project will participate in, which are described in Section 4.

Development Category (Select				
Significant re-development involving the addition or replacement of 5,000 ft ² or more of impervious surface on an already developed site	New development involving the creation of 10,000 ft ² or more of impervious surface collectively over entire site	shops with s industrial cla	assification (SIC) 5014, 5541,	Restaurants (with SIC code 5812) where the la area of development is 5,000 ft ² or more
 Hillside developments of 5,000 ft² or more which are located on areas with known erosive soil conditions or where the natural slope is 25 percent or more Non-Priority / Non-Category jurisdiction on specific requirements. 	Developments of 2,500 ft ² of impervious surface or more adjacent to (within 200 ft) or discharging directly into environmentally sensitive areas or waterbodies listed on the CWA Section 303(d) list of impaired waters.	or more exp water	ther LIP requirement	Retail gasoline outly that are either 5,000 ft ² more, or have a project average daily traffic of 1 or more vehicles per day
 Project Area (ft2): 264,445 	3 Number of Dwelling	Units: 0	⁴ SIC C	ode: 0752
⁵ Is Project going to be phased? BMPs to address runoff at time of co	Yes 🗌 No 🔀 If yes, ensure that	the WQMP evalu	uates each phase as	a distinct DA, requiring LID

2.2 Property Ownership/Management

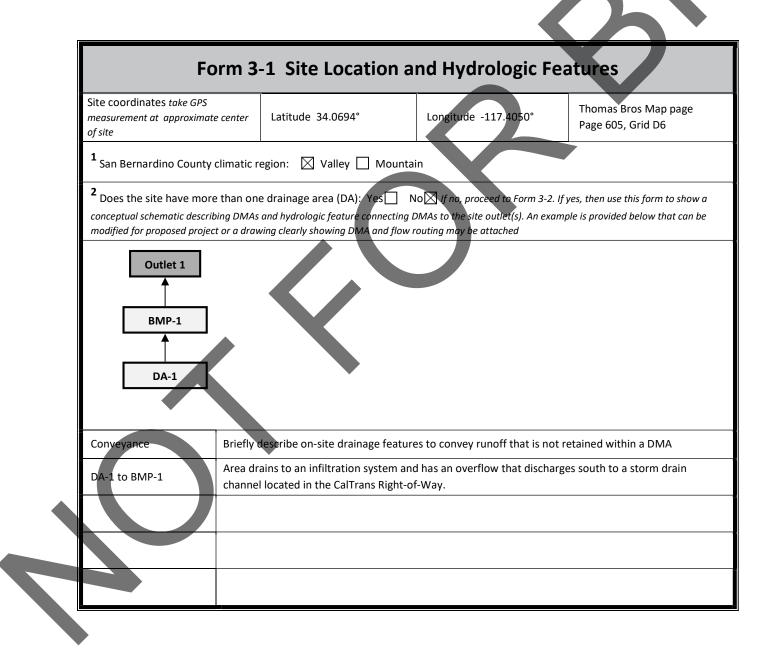
Describe the ownership/management of all portions of the project and site. State whether any infrastructure will transfer to public agencies (City, County, Caltrans, etc.) after project completion. State if a homeowners or property owners association will be formed and be responsible for the long-term maintenance of project stormwater facilities. Describe any lot-level stormwater features that will be the responsibility of individual property owners.

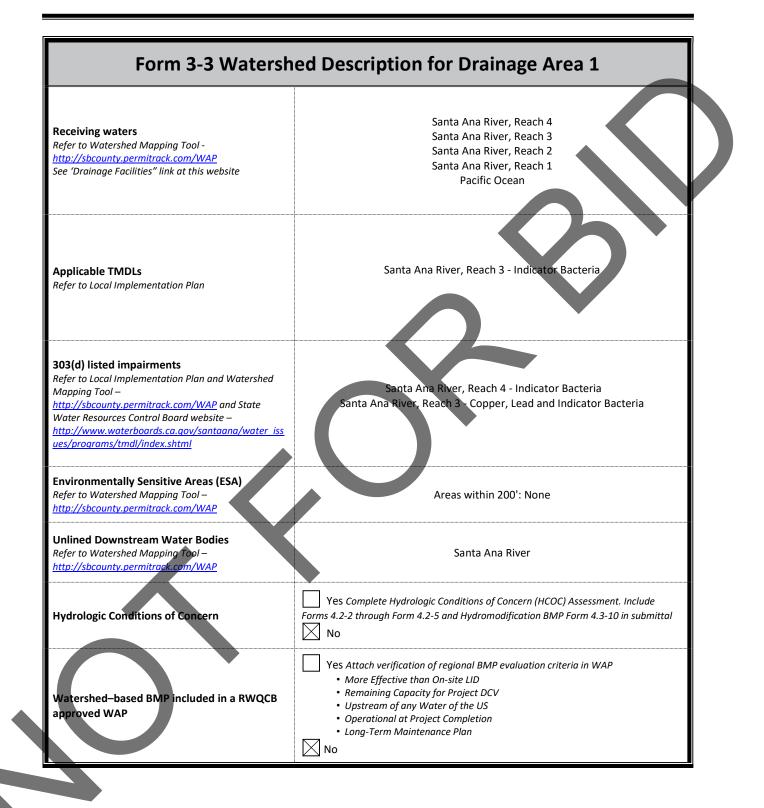

2.3 Potential Stormwater Pollutants

Determine and describe expected stormwater pollutants of concern based on land uses and site activities (refer to Table 3-3 in the TGD for WQMP).

Pollutant	Please E=Expecte Expe	ed, N=Not	Additional Information and Comments
Pathogens (Bacterial / Virus)	Е 🖂	N 🗌	Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include animal waste.
Phosphorous	E	N 🗌	Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and eroded soils.
Nitrogen	E	N 🗌	Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and eroded soils.
Sediment	E 🔀	N 🗌	Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include eroded soils.
Metals	E		Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include brake pad and tire tread wear associated with driving.
Oil and Grease	E 🔀		Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include petroleum hydrocarbon products, motor products from leaking vehicles, esters, oils, fats, waxes, and high molecular-weight fatty acids.
Trash/Debris	E 🖂	N	Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include paper, plastic, polystyrene packing foam, and aluminum materials.
Pesticides / Herbicides	E 🔀		Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and pest sprays.
Organic Compounds	E 🔀	N 🗌	Expected per Table 3-3 in the TGD for WQMP. Per section 3.3 of the TGD for WQMP, potential sources include solvents and cleaning compounds.
Other:	E	N 🗌	
Other:	E	N 🗌	
Other	E 🗌	N 🗌	
Other:	E 🗌	N 🗌	
Other:	E 🗌	N 🗌	
Other:	E 🗌	N 🗌	

2.4 Water Quality Credits


A water quality credit program is applicable for certain types of development projects if it is not feasible to meet the requirements for on-site LID. Proponents for eligible projects, as described below, can apply for water quality credits that would reduce project obligations for selecting and sizing other treatment BMP or participating in other alternative compliance programs. Refer to Section 6.2 in the TGD for WQMP to determine if water quality credits are applicable for the project.


Section 3 Site and Watershed Description

Describe the project site conditions that will facilitate the selection of BMP through an analysis of the physical conditions and limitations of the site and its receiving waters. Identify distinct drainage areas (DA) that collect flow from a portion of the site and describe how runoff from each DA (and sub-watershed DMAs) is conveyed to the site outlet(s). Refer to Section 3.2 in the TGD for WQMP. The form below is provided as an example.

Then complete Forms 3.2 and 3.3 for each DA on the project site. If the project has more than one drainage area for stormwater management, then complete additional versions of these forms for each DA / outlet.

Form 3-2 Existing Hydro	DIOGIC Chara	acteristics f	or Drainage	Area 1	
¹ DMA drainage area (ft ²)	264,445				
2 Existing site impervious area (ft ²)	264,445				
³ Antecedent moisture condition For desert areas, use <u>http://www.sbcounty.gov/dpw/floodcontrol/pdf/2</u> 0100412_map.pdf	II		K		
⁴ Hydrologic soil group Refer to Watershed Mapping Tool – <u>http://sbcounty.permitrack.com/WAP</u>	A				
⁵ Longest flowpath length (ft)	841				
6 Longest flowpath slope (ft/ft)	0.013				
7 Current land cover type(s) <i>Select from Fig C-3</i> <i>of Hydrology Manual</i>	Perennial Grass				
⁸ Pre-developed pervious area condition: Based on the extent of wet season vegetated cover good >75%; Fair 50-75%; Poor <50% Attach photos of site to support rating	Fair				

Section 4 Best Management Practices (BMP)

4.1 Source Control BMP

4.1.1 Pollution Prevention

Non-structural and structural source control BMP are required to be incorporated into all new development and significant redevelopment projects. Form 4.1-1 and 4.1-2 are used to describe specific source control BMPs used in the WQMP or to explain why a certain BMP is not applicable. Table 7-3 of the TGD for WQMP provides a list of applicable source control BMP for projects with specific types of potential pollutant sources or activities. The source control BMP in this table must be implemented for projects with these specific types of potential pollutant sources or activities.

The preparers of this WQMP have reviewed the source control BMP requirements for new development and significant redevelopment projects. The preparers have also reviewed the specific BMP required for project as specified in Forms 4.1-1 and 4.1-2. All applicable non-structural and structural source control BMP shall be implemented in the project.

The information provided in Form 4.1.1 and 4.1.2 is based on section 7 of the TGD for WQMP (p.92-105) including table 7-3, CASQA BMP Handbooks and comments from the reviewing agency. The provided description of BMP implementation is a summary and not intended to be an all-inclusive list of actions. Refer to the appendix 6.3 of the approved WQMP for applicable CASQA handouts and manufacturer information.

	Form 4	1.1-1 No	on-Struc	tural Source Control BMPs
	News	Check One		Describe BMP Implementation OR,
dentifier	Name	Included	Not Applicable	if not applicable, state reason
N1	Education of Property Owners, Tenants and Occupants on Stormwater BMPs			The Property Owner will provide BMP educational information materials to any employees, tenants (if any), and occupants. These materials will be included in the approved WQMP. Thereafter, such materials will be available through the county stormwater education program. The current website is www.sbcountystormwater.org
N2	Activity Restrictions			Activity restrictions will be imposed by the owner to limit exposure of stormwater to potential pollutants. Activity restrictions include limiting the site usage for its intended use and ensuring proper pesticide application.
N3	Landscape Management BMPs			Owner will ensure landscaping and irrigation is properly maintained.
N4	BMP Maintenance			The property owner will ensure regular inspection, repair, and maintenance of BMP.
N5	Title 22 CCR Compliance (How development will comply)			Not applicable
N6	Local Water Quality Ordinances			This project will comply with all local water quality ordinances through this WQMP.
N7	Spill Contingency Plan			Not applicable
N8	Underground Storage Tank Compliance			Not applicable
N9	Hazardous Materials Disclosure Compliance			Not applicable
N10	Uniform Fire Code Implementation			Not applicable
NIU				Not applicable

	Form 4.1-1 Non-Structural Source Control BMPs							
N11	Litter/Debris Control Program	\boxtimes		Owner will ensure weekly inspection and clean up for litter and debris.				
N12	Employee Training	\boxtimes		Owner will ensure that employees are trained on BMPs.				
N13	Housekeeping of Loading Docks			Not applicable				
N14	Catch Basin Inspection Program	\boxtimes		Owner will ensure catch basins are regularly inspected, repair, and maintained.				
N15	Vacuum Sweeping of Private Streets and Parking Lots	\boxtimes		Parking areas shall be vacummed and sweeped monthly.				
N16	Other Non-structural Measures for Public Agency Projects			Project is not a public agency project.				
N17	Comply with all other applicable NPDES permits		D	The proposed site will comply with all NPDES permit requirements including a Storm Water Pollution Prevention Plan (SWPPP) and Water Quality Management Plan (WQMP).				

	Form 4.1	-2 Stru	ctural S	ource Control BMPs
		Cheo	ck One	Describe BMP Implementation OR,
Identifier	Name	Included	Not Applicable	If not applicable, state reason
S1	Provide storm drain system stencilling and signage (CASQA New Development BMP Handbook SD-13)			All storm drain inlets and catch basins will be labeled. Stenciled labels shall state "No Dumping – Drains to River" or similar message discouraging any litter dumping.
S2	Design and construct outdoor material storage areas to reduce pollution introduction (CASQA New Development BMP Handbook SD-34)			Not applicable
\$3	Design and construct trash and waste storage areas to reduce pollution introduction (CASQA New Development BMP Handbook SD-32)	\square		Trash storage areas will be constructed per plan.
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control (Statewide Model Landscape Ordinance; CASQA New Development BMP Handbook SD-12)			Owner will ensure landscaping and irrigation is properly maintained. Irrigation controls shall include rain-triggered shutoff devices to prevent irrigation after precipitation.
S5	Finish grade of landscaped areas at a minimum of 1-2 inches below top of curb, sidewalk, or pavement			Landscape areas will be a minimum of 1 inch below adjacent impervious areas.
S6	Protect slopes and channels and provide energy dissipation (CASQA New Development BMP Handbook SD-10)	K		Not applicable
S7	Covered dock areas (CASQA New Development BMP Handbook SD-31)			Not applicable
S8	Covered maintenance bays with spill containment plans (CASQA New Development BMP Handbook SD-31)			Not applicable
S9	Vehicle wash areas with spill containment plans (CASQA New Development BMP Handbook SD-33)			Not applicable
S10	Covered outdoor processing areas (CASQA New Development BMP Handbook SD-36)			Not applicable

	Form 4.1	-2 Stru	ctural S	ource Control BMPs
S11	Equipment wash areas with spill containment plans (CASQA New Development BMP Handbook SD-33)			Not applicable
S12	Fueling areas (CASQA New Development BMP Handbook SD-30)			Not applicable
S13	Hillside landscaping (CASQA New Development BMP Handbook SD-10)			Not applicable
S14	Wash water control for food preparation areas			Not applicable
S15	Community car wash racks (CASQA New Development BMP Handbook SD-33)			Not applicable
				4-5

4.1.2 Preventative LID Site Design Practices

Site design practices associated with new LID requirements in the MS4 Permit should be considered in the earliest phases of a project. Preventative site design practices can result in smaller DCV for LID BMP and hydromodification control BMP by reducing runoff generation. Describe site design and drainage plan including:

- A narrative of site design practices utilized or rationale for not using practices
- A narrative of how site plan incorporates preventive site design practices
- Include an attached Site Plan layout which shows how preventative site design practices are included in WQMP

Refer to Section 5.2 of the TGD for WQMP for more details.

Form 4.1-3 Preventative LID Site Design Practices Checklist
Site Design Practices
If yes, explain how preventative site design practice is addressed in project site plan. If no, other LID BMPs must be selected to meet targets
Minimize impervious areas: Yes 🛛 No 🗌
Explanation: Impervious area has been minimized as much as possible for the proposed use of this site.
Maximize natural infiltration capacity: Yes 🛛 No 🗌
Explanation: Maximized natural infilitration capacity by incorporating a design that promotes water retention through
placement of proposed landscape and infiltration BMPs.
Preserve existing drainage patterns and time of concentration: Yes 🔀 No 🗌
Explanation: Existing drainage patterns and time of concentration have been generally preserved.
Disconnect impervious areas: Yes 🖂 No 🗌
Explanation: Site is approximatly 70% impervious. LID BMP selected to meet WQMP requirments is an underground infiltration system.
Protect existing vegetation and sensitive areas: Yes 🗌 No 🖂
Explanation: No sensitive areas exist on site.
Re-vegetate disturbed areas: Yes 🖾 No 🗌
Explanation: Disturbed areas will be re-vegated with proposed landscape per plans.
Minimize unnecessary compaction in stormwater retention/infiltration basin/trench areas: Yes 🛛 No 🗌
Explanation: Stormwater BMP areas will be marked with flagging tape to minimize compaction and maximize natural infiltration capacity.
Utilize vegetated drainage swales in place of underground piping or imperviously lined swales: Yes 🗌 No 🛛
Explanation: Vegetated swales will not be used on this project. Underground piping is used. LID BMP selected to meet target is underground infiltration system.
Stake off areas that will be used for landscaping to minimize compaction during construction : Yes 🖂 No 🗌
Explanation: Landscape areas will be marked with flagging to minimize compaction and maximize natural infiltration capacity.

4.2 Project Performance Criteria

The purpose of this section of the Project WQMP is to establish targets for post-development hydrology based on performance criteria specified in the MS4 Permit. These targets include runoff volume for water quality control (referred to as LID design capture volume), and runoff volume, time of concentration, and peak runoff for protection of any downstream waterbody segments with a HCOC. *If the project has more than one outlet for stormwater runoff, then complete additional versions of these forms for each DA / outlet.*

Methods applied in the following forms include:

- For LID BMP Design Capture Volume (DCV), the San Bernardino County Stormwater Program requires use of the P6 method (MS4 Permit Section XI.D.6a.ii) – Form 4.2-1
- For HCOC pre- and post-development hydrologic calculation, the San Bernardino County Stormwater Program requires the use of the Rational Method (San Bernardino County Hydrology Manual Section D). Forms 4.2-2 through Form 4.2-5 calculate hydrologic variables including runoff volume, time of concentration, and peak runoff from the project site pre- and post-development using the Hydrology Manual Rational Method approach. For projects greater than 640 acres (1.0 mi²), the Rational Method and these forms should not be used. For such projects, the Unit Hydrograph Method (San Bernardino County Hydrology Manual Section E) shall be applied for hydrologic calculations for HCOC performance criteria.

Refer to Section 4 in	the TGD for WQM	P for detailed guidance	ce and instructions.
	·	Ũ	

¹ Project area DA 1 (ft ²): 264,445	² Imperviousness after applying preventative site design practices (Imp%): 70.00	³ Runoff Coefficient (Rc): 0.494 R _c = 0.858(Imp%) ³ -0.78(Imp%) ² +0.	
⁴ Determine 1-hour rainfa	II depth for a 2-year return period P _{2yr-1hr} (in): 0.54	43 <u>http://hdsc.nws.noaa.gov/hdsc/</u>	ofds/sa/sca_pfds
by the local jurisdiction. The n	ndition. Selection and use of the 24 hour drawdown tim ecessary BMP footprint is a function of drawdown time. ia for LID BMP design capture volume, the depth of wate	While shorter drawdown times	24-hrs 🗌 48-hrs 🔀
	volume, DCV (ft³): 17,178 *Item 5 * C₂], where C₂ is a function of drawdown rate (2	21.br - 1 582·18.br - 1 963)	
	ch outlet from the project site per schematic drawn in Fo		

Form 4.2-2 Summary of HCOC Assessment (DA 1)

Does project have the potential to cause or contribute to an HCOC in a downstream channel: Yes No X Go to: <u>http://sbcounty.permitrack.com/WAP</u>

If "Yes", then complete HCOC assessment of site hydrology for 2yr storm event using Forms 4.2-3 through 4.2-5 and insert results below (Forms 4.2-3 through 4.2-5 may be replaced by computer software analysis based on the San Bernardino County Hydrology Manual) If "No," then proceed to Section 4.3 Project Conformance Analysis

Condition	Runoff Volume (ft ³)	Time of Concentration (min)	Peak Runoff (cfs)
Pre-developed	1 Form 4.2-3 Item 12	2 Form 4.2-4 Item 13	3 Form 4.2-5 Item 10
Post-developed	4 Form 4.2-3 Item 13	5 Form 4.2-4 tem 14	6 Form 4.2-5 Item 14
Difference	7	8	9
Difference	Item 4 – Item 1 10 0%	Item 2- Item 5	Item 6 – Item 3
(as % of pre-developed)	ltem 7 / ltem 1	Item 8 / Item 2	Item 9 / Item 3

Form 4.	2-3 HC	OC Asse	essment	for Run	off Volu	me (DA	1)	
Weighted Curve Number Determination for: <u>Pre</u> -developed DA	DMA A	DMA B	DMA C	DMA D	DMA E	DMA F	DMA G	DMA H
1a Land Cover type								
2a Hydrologic Soil Group (HSG)								
3a DMA Area, ft ² sum of areas of DMA should equal area of DA								
4 a Curve Number (CN) use Items 1 and 2 to select the appropriate CN from Appendix C-2 of the TGD for WQMP						X		
Weighted Curve Number Determination for: <u>Post</u> -developed DA	DMA A	DMA B	DMA C	DMA D	DMA E	DMA F	DMA G	DMA H
1b Land Cover type								
2b Hydrologic Soil Group (HSG)								
3b DMA Area, ft ² sum of areas of DMA should equal area of DA								
4b Curve Number (CN) use Items 5 and 6 to select the appropriate CN from Appendix C-2 of the TGD for WQMP								
5 Pre-Developed area-weighted CN	V:	7 Pre-develo S = (1000 / 18		ge capacity, S	(in):	9 Initial ab <i>I_a</i> = 0.2 * <i>I</i>	straction, I _a (i <i>tem 7</i>	n):
6 Post-Developed area-weighted C	:N:	8 Post-devel S = (1000 / It		age capacity, S	(in):	10 Initial a I _a = 0.2 * I	bstraction, I _a tem 8	(in):
11 Precipitation for 2 yr, 24 hr sto Go to: <u>http://hdsc.nws.noac.gov/ha</u> 12 Pre-developed Volume (ft ³): $V_{pre} = (1 / 12) * (Item sum of Item 3) *$ 13 Post-developed Volume (ft ³). $V_{pre} = (1 / 12) * (Item sum of Item 3) *$	sc/pfds/sa/sca	m 9)^2 / ((Item						
$V_{pre} = (1 / 12) * (item sum of item 3) *$ 14 Volume Reduction needed to r $V_{HCOC} = (item 13 * 0.95) - item 12$								

Form 4.2-4 HCOC Assessment for Time of Concentration (DA 1)

Compute time of concentration for pre and post developed conditions for each DA (For projects using the Hydrology Manual complete the form below)

Variables	Use additio		oped DA1 ere are more t	han 4 DMA	Use additi	Post-devel onal forms if th		han 4 DMA
	DMA A	DMA B	DMA C	DMA D	DMA A	DMA B	DMA C	DMA D
¹ Length of flowpath (ft) <i>Use Form 3-2 Item 5 for pre-developed condition</i>								
² Change in elevation (ft)								
3 Slope (ft/ft), <i>S</i> ₀ = <i>Item 2 / Item 1</i>								
⁴ Land cover								
 Initial DMA Time of Concentration (min) Appendix C-1 of the TGD for WQMP 								
⁶ Length of conveyance from DMA outlet to project site outlet (ft) <i>May be zero if DMA outlet is at project site outlet</i>								
7 Cross-sectional area of channel (ft ²)								
8 Wetted perimeter of channel (ft)								
9 Manning's roughness of channel (n)								
10 Channel flow velocity (ft/sec) $V_{fps} = (1.49 / Item 9) * (Item 7/Item 8)^{0.67} * (Item 3)^{0.5}$								
11 Travel time to outlet (min) $T_t = Item 6 / (Item 10 * 60)$								
$12 \text{ Total time of concentration (min)} $ $T_c = ltem 5 + ltem 11$								
¹³ Pre-developed time of concentration	(min):	Minimum	of Item 12 pre	e-developed DN	1A			
¹⁴ Post-developed time of concentratio	n (min):	Minimun	n of Item 12 po	st-developed D	рМА			
15 Additional time of concentration nee	ded to meet	HCOC requir	ement (min)	: Т _{с-нс}	_{coc} = (Item 14	* 0.95) – Iter	n 13	

Compute peak runoff for pre- and post-develo	ped conditions				-	-	_	
Variables			Outlet (L	eloped DA Use addition ore than 3 D		Outlet (ι	eloped DA Jse addition are than 3 Di	al forms if
			DMA A	DMA B	DMA C	DMA A	DMA B	DMA C
Rainfall Intensity for storm duration equal to The storm 4.2-1 Item 4 - 0.6 LOG Form 4.2		ation						
Drainage Area of each DMA (ft ²)								
or DMA with outlet at project site outlet, include up chematic in Form 3-1, DMA A will include drainage j		g example						
Ratio of pervious area to total area								
or DMA with outlet at project site outlet, include up chematic in Form 3-1, DMA A will include drainage j		g example						
Pervious area infiltration rate (in/hr)								
Ise pervious area CN and antecedent moisture cond or WQMP	ition with Appendix	C-3 of the TGD						
Maximum loss rate (in/hr) 5 _m = Item 3 * Item 4 Jse area-weighted F _m from DMA with outlet at proje DMA (Using example schematic in Form 3-1, DMA A								
Peak Flow from DMA (cfs) 2 _p =Item 2 * 0.9 * (Item 1 - Item 5)	\checkmark							
Time of concentration adjustment factor for	other DMA to	DMA A	n/a			n/a		
ite discharge point		DMA B		n/a			n/a	
orm 4.2-4 Item 12 DMA / Other DMA upstream of s oint (If ratio is greater than 1,0, then use maximum		DMA C			n/a			n/a
Pre-developed Q _p at T _c for DMA A: Q _p = Item 6 _{DMAA} + [Item 6 _{DMAB} * (Item 1 _{DMAA} - Item _{DMAB})/(Item 1 _{DMAB} - Item 5 _{DMAB})* Item 7 _{DMAA/2}] + Item 6 _{DMAC} * (Item 1 _{DMAA} - Item 5 _{DMAC})/(Item 1 _{DMAC} - iem 5 _{DMAC})* Item 7 _{DMAA/3}]	9 Pre-developed Q _p = Item 6 _{DMAB} + 5 _{DMAA})/(Item 1 _{DMA} [Item 6 _{DMAC} * (Item Item 5 _{DMAC})* Item	[Item 6 _{DMAA} * (It a - Item 5 _{DMAA})* n 1 _{DMAB} - Item 5 7 _{DMAB/3}]	em 1 _{DMAB} - Ite Item 7 _{DMAB/1}] -	т Q _p : + 5 _{DM} мас - [Ite	Pre-develo = Item 6 _{DMAC} 	+ [Item 6 _{DMA} , _{1AA} - Item 5 _{DN} em 1 _{DMAC} - Ite	а * (Item 1 _{DN} лаа)* Item 7	лас - Item рмас/1] +
Peak runoff from pre-developed condition c	onfluence analys	is (cfs):	Maximum c	of Item 8, 9,	and 10 (incl	uding additio	onal forms o	s needed)
¹ Post-developed Q_p at T_c for DMA A:	12 Post-develo	ped Q_p at T_c for	or DMA B:	13	Post-develo			
	Same as It	em 9 for post-a	eveloped valu	ies val		tem 10 for	post-develo	pea
Same as Item 8 for post-developed values								

4.3 Project Conformance Analysis

Complete the following forms for each project site DA to document that the proposed LID BMPs conform to the project DCV developed to meet performance criteria specified in the MS4 Permit (WQMP Template Section 4.2). For the LID DCV, the forms are ordered according to hierarchy of BMP selection as required by the MS4 Permit (see Section 5.3.1 in the TGD for WQMP). The forms compute the following for on-site LID BMP:

- Site Design and Hydrologic Source Controls (Form 4.3-2)
- Retention and Infiltration (Form 4.3-3)
- Harvested and Use (Form 4.3-4) or
- Biotreatment (Form 4.3-5).

At the end of each form, additional fields facilitate the determination of the extent of mitigation provided by the specific BMP category, allowing for use of the next category of BMP in the hierarchy, if necessary.

The first step in the analysis, using Section 5.3.2.1 of the TGD for WQMP is to complete Forms 4.3-1 and 4.3-3) to determine if retention and infiltration BMPs are infeasible for the project. For each feasibility criterion in Form 4.3-1, if the answer is "Yes," provide all study findings that includes relevant calculations, maps, data sources, etc. used to make the determination of infeasibility.

Next, complete Forms 4.3-2 and 4.3-4 to determine the feasibility of applicable HSC and harvest and use BMPs, and, if their implementation is feasible, the extent of mitigation of the DCV.

If no site constraints exist that would limit the type of BMP to be implemented in a DA, evaluate the use of combinations of LID BMPs, including all applicable HSC BMPs to maximize on-site retention of the DCV. If no combination of BMP can mitigate the entire DCV, implement the single BMP type, or combination of BMP types, that maximizes on-site retention of the DCV within the minimum effective area.

If the combination of LID HSC, retention and infiltration, and harvest and use BMPs are unable to mitigate the entire DCV, then biotreatment BMPs may be implemented by the project proponent. If biotreatment BMPs are used, then they must be sized to provide sufficient capacity for effective treatment of the remainder of the volume-based performance criteria that cannot be achieved with LID BMPs (TGD for WQMP Section 5.4.4.2). **Under no circumstances shall any portion of the DCV be released from the site without effective mitigation and/or treatment**.

Feasibility Criterion – Complete evaluation for each DA on the Project Site	
¹ Would infiltration BMP pose significant risk for groundwater related concerns? Refer to Section 5.3.2.1 of the TGD for WQMP	Yes 🗖 No
If Yes, Provide basis: (attach)	
 Would installation of infiltration BMP significantly increase the risk of geotechnical hazards? (Yes, if the answer to any of the following questions is yes, as established by a geotechnical expert): The location is less than 50 feet away from slopes steeper than 15 percent The location is less than eight feet from building foundations or an alternative setback. A study certified by a geotechnical professional or an available watershed study determines that sto result in significantly increased risks of geotechnical hazards. 	Yes No
If Yes, Provide basis: (attach)	
³ Would infiltration of runoff on a Project site violate downstream water rights?	Yes 🗌 No
If Yes, Provide basis: (attach)	
⁴ Is proposed infiltration facility located on hydrologic soil group (HSG) D solls or does the site geotechnic presence of soil characteristics, which support categorization as D soils?	cal investigation indicate Yes 🗌 No
If Yes, Provide basis: (attach)	
⁵ Is the design infiltration rate, after accounting for safety factor of 2.0, below proposed facility less than soil amendments)?	0.3 in/hr (accounting fo Yes 🗌 No
soil amendments)?	Yes 🗌 No
soil amendments)? If Yes, Provide basis: (attach) ⁶ Would on-site infiltration or reduction of runoff over pre-developed conditions be partially or fully incom management strategies as defined in the WAP, or impair beneficial uses?	Yes No
soil amendments)? If Yes, Provide basis: (attach) ⁶ Would on-site infiltration or reduction of runoff over pre-developed conditions be partially or fully incom management strategies as defined in the WAP, or impair beneficial uses? See Section 3.5 of the TGD for WQMP and WAP	Yes No

4.3.1 Site Design Hydrologic Source Control BMP

Section XI.E. of the Permit emphasizes the use of LID preventative measures; and the use of LID HSC BMPs reduces the portion of the DCV that must be addressed in downstream BMPs. Therefore, all applicable HSC shall be provided except where they are mutually exclusive with each other, or with other BMPs. Mutual exclusivity may result from overlapping BMP footprints such that either would be potentially feasible by itself, but both could not be implemented. Please note that while there are no numeric standards regarding the use of HSC, if a project cannot feasibly meet BMP sizing requirements or cannot fully address HCOCs, feasibility of all applicable HSC must be part of demonstrating that the BMP system has been designed to retain the maximum feasible portion of the DCV. Complete Form 4.3-2 to identify and calculate estimated retention volume from implementing site design HSC BMP. Refer to Section 5.4.1 in the TGD for more detailed guidance.

Form 4.3-2 Site Design Hydrold	ogic Source	Control BMI	Ps (DA 1)
¹ Implementation of Impervious Area Dispersion BMP (i.e. routing runoff from impervious to pervious areas), excluding impervious areas planned for routing to on-lot infiltration BMP: Yes ∑ No ☐ <i>If yes, complete Items 2-5; If no, proceed to Item 6</i>	DA 1 DMA 1 BMP Type Landscape	DA DMA ВМР Туре	DA DMA BMP Type (Use additional forms for more BMPs)
² Total impervious area draining to pervious area (ft ²)	79,161		
³ Ratio of pervious area receiving runoff to impervious area	0.30		
⁴ Retention volume achieved from impervious area dispersion (ft ³) $V = Item 2 * Item 3 * (0.5/12)$, assuming retention of 0.5 inches of runoff	989	0	0
⁵ Sum of retention volume achieved from impervious area disp	persion (ft ³): 989 <i>V</i>	/retention =Sum of Item 4 for	er all BMPs
⁶ Implementation of Localized On-lot Infiltration BMPs (e.g. on-lot rain gardens): Yes No X If yes, complete Items 7- 13 for aggregate of all on-lot infiltration BMP in each DA; If no, proceed to Item 14	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional forms for more BMPs)
7 Ponding surface area (ft ²)			
⁸ Ponding depth (ft)			
⁹ Surface area of amended soil/gravel (ft ²)			
10 Average depth of amended soil/gravel (ft)			
11 Average porosity of amended soil/gravel			
12 Retention volume achieved from on-lot infiltration (ft ³) V _{retention} = (Item 7 *Item 8) + (Item 9 * Item 10 * Item 11)	0	0	0
¹³ Runoff volume retention from on-lot infiltration (ft ³): 0	Vretention =Sum of Item 12	for all BMPs	

 ¹⁴ Implementation of evapotranspiration BMP (green, brown, or blue roofs): Yes No X If yes, complete Items 15-20. If no, proceed to Item 21 	DA DMA BMP Type	DA DMA BMP Type	BMP Type (U additional forms f more BMPs)
15 Rooftop area planned for ET BMP (ft ²)			
16 Average wet season ET demand (in/day) Use local values, typical ~ 0.1			
17 Daily ET demand (ft ³ /day) Item 15 * (Item 16 / 12)			
18 Drawdown time (hrs) <i>Copy Item 6 in Form 4.2-1</i>			
19 Retention Volume (ft ³) V _{retention} = Item 17 * (Item 18 / 24)	0	0	0
20 Runoff volume retention from evapotranspiration BMPs (f	t ³): 0 V _{retention} =Sun	n of Item 19 for all BMPs	;
21 Implementation of Street Trees: Yes No X If yes, complete Items 20-2. If no, proceed to Item 24	DA DMA ВМР Туре	DA DMA BMP Type	DA DMA BMP Type (L additional forms j more BMPs)
22 Number of Street Trees			
23 Average canopy cover over impervious area (ft ²)			
24 Runoff volume retention from street trees (ft ³) V _{retention} = Item 22 * Item 23 * (0.05/12) assume runoff retention of 0.05 inches	0	0	0
25 Runoff volume retention from street tree BMPs (ft ³): 0	V _{retention} = Sum of Item 2	24 for all BMPs	
26 Implementation of residential rain barrels/cisterns: Yes No If yes, complete Items 27-28; If no, proceed to Item 29	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (L additional forms f more BMPs)
27 Number of rain barrels/cisterns			
28 Runoff volume retention from rain barrels/cisterns (ft ³) V _{retention} = Item 27 * 3	0	0	0
²⁹ Runoff volume retention from residential rain barrels/Ciste	erns (ft3): 0 V _{retent}	_{ion} =Sum of Item 28 for a	ll BMPs

4.3.2 Infiltration BMPs

Use Form 4.3-3 to compute on-site retention of runoff from proposed retention and infiltration BMPs. Volume retention estimates are sensitive to the percolation rate used, which determines the amount of runoff that can be infiltrated within the specified drawdown time. The infiltration safety factor reduces field measured percolation to account for potential inaccuracy associated with field measurements, declining BMP performance over time, and compaction during construction. Appendix D of the TGD for WQMP provides guidance on estimating an appropriate safety factor to use in Form 4.3-3.

If site constraints limit the use of BMPs to a single type and implementation of retention and infiltration BMPs mitigate no more than 40% of the DCV, then they are considered infeasible and the Project Proponent may evaluate the effectiveness of BMPs lower in the LID hierarchy of use (Section 5.5.1 of the TGD for WQMP)

If implementation of infiltrations BMPs is feasible as determined using Form 4.3-1, then LID infiltration BMPs shall be implemented to the MEP (section 4.1 of the TGD for WQMP).

Form 4.3-3 Infiltration LID BMP - including underground BMPs (DA 1)				
1 Remaining LID DCV not met by site design HSC BMP (ft ³): 16,189	V _{unmet} = Form 4.2-1 Item	7 - Form 4.3-2 Item 30	0	
BMP Type Use columns to the right to compute runoff volume retention from proposed infiltration BMP (select BMP from Table 5-4 in TGD for WQMP) - Use additional forms for more BMPs	DA 1 DMA BMP Type Underground Infiltration System	DA 0 DMA BMP Type	DA 0 DMA BMP Type (Use additional forms for more BMPs)	
² Infiltration rate of underlying soils (in/hr) See Section 5.4.2 and Appendix D of the TGD for WQMP for minimum requirements for assessment methods	1.82			
³ Infiltration safety factor See TGD Section 5.4.2 and Appendix D	2.62	X		
4 Design percolation rate (in/hr) <i>P</i> _{design} = <i>Item 2 / Item 3</i>	0.69			
⁵ Ponded water drawdown time (hr) <i>Copy Item 6 in Form 4.2-1</i>	48			
6 Maximum ponding depth (ft) <i>BMP specific, see Table 5-4 of the TGD for WQMP for BMP design details</i>	2.76			
⁷ Ponding Depth (ft) $d_{BMP} = Minimum of (1/12*Item 4*Item 5) or Item 6$	2.76			
⁸ Infiltrating surface area, SA_{BMP} (ft ²) the lesser of the area needed for infiltration of full DCV or minimum space requirements from Table 5.7 of the TGD for WQMP	5,866			
9 Amended soil depth, d _{media} (ft) Only included in certain BMP types, see Table 5-4 in the TGD for WQMP for reference to BMP design details	N/A			
10 Amended soil porosity	N/A			
¹¹ Gravel depth, d _{media} (ft) Only included in certain BMP types, see Table 5-4 of the TGD for WQMP for BMP design details	N/A			
12 Gravel porosity	N/A			
¹³ Duration of storm as basin is filling (hrs) Typical ~ 3hrs	3			
¹⁴ Above Ground Retention Volume (ft ³) V _{retention} = Item 8 * [Item7 + (Item 9 * Item 10) + (Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]	16,189			
¹⁵ Underground Retention Volume (ft ³) Volume determined using manufacturer's specifications and calculations				
 Total Retention Volume from LID Infiltration BMPs: 16,189 (Sum Fraction of DCV achieved with infiltration BMP: 100% Retention 			luded in plan)	
18 Is full LID DCV retained on-site with combination of hydrologic so (fyes, demonstrate conformance using Form 4.3-10; If no, then reduce Item 3, Factor of site area used for retention and infiltration BMPs equals or exceeds the minimum effective development and repeat all above calculations.	Safety to 2.0 and increase	Item 8, Infiltrating Surface	e Area, such that the portion of the	

4.3.3 Harvest and Use BMP

Harvest and use BMP may be considered if the full LID DCV cannot be met by maximizing infiltration BMPs. Use Form 4.3-4 to compute on-site retention of runoff from proposed harvest and use BMPs.

Volume retention estimates for harvest and use BMPs are sensitive to the on-site demand for captured stormwater. Since irrigation water demand is low in the wet season, when most rainfall events occur in San Bernardino County, the volume of water that can be used within a specified drawdown period is relatively low. The bottom portion of Form 4.3-4 facilitates the necessary computations to show infeasibility if a minimum incremental benefit of 40 percent of the LID DCV would not be achievable with MEP implementation of on-site harvest and use of stormwater (Section 5.5.4 of the TGD for WQMP).

V _{unmet} = Form 4.2-1 Item 7 - Form 4.3-2 Item 30 – Form 4.3-3 Item 16			
BMP Type(s) Compute runoff volume retention from proposed harvest and use BMP (Select BMPs from Table 5-4 of the TGD for WQMP) - Use additional forms for more BMPs	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional for for more BMPs)
² Describe cistern or runoff detention facility			
³ Storage volume for proposed detention type (ft ³) <i>Volume of cistern</i>			
⁴ Landscaped area planned for use of harvested stormwater (ft ²)			
 Average wet season daily irrigation demand (in/day) Use local values, typical ~ 0.1 in/day 			
⁶ Daily water demand (ft ³ /day) <i>Item 4 * (Item 5 / 12)</i>			
⁷ Drawdown time (hrs) Copy Item 6 from Form 4.2-1			
8 Retention Volume (ft ³) V _{retention} = Minimum of (Item 3) or (Item 6 * (Item 7 / 24))	0	0	0
9 Total Retention Volume (ft ³) from Harvest and Use BMP: 0 <i>Su</i>	m of Item 8 for all har	vest and use BMP includ	led in plan
¹⁰ Is the full DCV retained with a combination of LID HSC, reter If yes, demonstrate conformance using Form 4.3-10. If no, then re-eval			

4.3.4 Biotreatment BMP

Biotreatment BMPs may be considered if the full LID DCV cannot be met by maximizing retention and infiltration, and harvest and use BMPs. A key consideration when using biotreatment BMP is the effectiveness of the proposed BMP in addressing the pollutants of concern for the project (see Table 5-5 of the TGD for WQMP).

Use Form 4.3-5 to summarize the potential for volume based and/or flow based biotreatment options to biotreat the remaining unmet LID DCV w. Biotreatment computations are included as follows:

- Use Form 4.3-6 to compute biotreatment in small volume based biotreatment BMP (e.g. bioretention w/underdrains);
- Use Form 4.3-7 to compute biotreatment in large volume based biotreatment BMP (e.g. constructed wetlands);
- Use Form 4.3-8 to compute sizing criteria for flow-based biotreatment BMP (e.g. bioswales)

¹ Remaining LID DCV not met by si infiltration, or harvest and use BM	List poliuta	nts of concern Copy	from Form 2.3-1.
biotreatment (ft ³): 0 Form 4.2-1 lt 30 – Form 4.3-3 Item 16- Form 4.3-4 Ite	em 7 - Form 4.3-2 Item		
² Biotreatment BMP Selected	Volume-based biotreatm Use Forms 4.3-6 and 4.3-7 to compute		Flow-based biotreatment Ise Form 4.3-8 to compute treated vo
(Select biotreatment BMP(s) necessary to ensure all pollutants of concern are addressed through Unit Operations and Processes, described in Table 5-5 of the TGD for WQMP)	 Bioretention with underdrain Planter box with underdrain Constructed wetlands Wet extended detention Dry extended detention 	<u> </u>	/egetated swale /egetated filter strip Proprietary biotreatment
³ Volume biotreated in volume ba biotreatment BMP (ft ³): 0 Form 4.3 Item 15 + Form 4.3-7 Item 13		based biotreatment	 Remaining fraction of LID DC sizing flow based biotreatment % Item 4 / Item 1
⁶ Flow-based biotreatment BMP c provide biotreatment of remaining per 7	apacity provided (cfs): Use Figure Use Figure Use Figure DCV (Item 5), for the second se	, , ,	WQMP to determine flow capacity re n zone (Form 3-1 Item 1)
TGD for WQMP for the prop	portion of site area used for suite o posed category of development: nust be optimized to retain and infiltrate maining portion of the DCV shall then be	If maximized on-site the maximum portion	retention BMPs is feasible for partial o of the DCV possible within the prescri

Biotreatment BMP Type (Bioretention w/underdrain, planter box w/underdrain, other comparable BMP)	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional for for more BMPs)
¹ Pollutants addressed with BMP List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in Table 5-5 of the TGD for WQMP			
2 Amended soil infiltration rate <i>Typical</i> ~ 5.0			
³ Amended soil infiltration safety factor <i>Typical</i> ~ 2.0			
4 Amended soil design percolation rate (in/hr) <i>P</i> _{design} = <i>Item 2 / Item 3</i>			
⁵ Ponded water drawdown time (hr) <i>Copy Item 6 from Form 4.2-1</i>			
6 Maximum ponding depth (ft) <i>see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>			
⁷ Ponding Depth (ft) $d_{BMP} = Minimum of (1/12 * Item 4 * Item 5) or Item 6$			
8 Amended soil surface area (ft ²)			
⁹ Amended soil depth (ft) <i>see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>			
¹⁰ Amended soil porosity, <i>n</i>			
¹¹ Gravel depth (ft) see Table 5-6 of the TGD for WQMP for reference to BMP design details			
¹² Gravel porosity, n			
13 Duration of storm as basin is filling (hrs) Typical ~ 3hrs			
14 Biotreated Volume (ft ³) V _{biotreated} = Item 8 * [(Item 7/2) + (Item 9 * Item 10) +(Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]	0	0	0
15 Total biotreated volume from bioretention and/or planter box Sum of Item 14 for all volume-based BMPs included in this form	with underdrains	BMP: 0	

Biotreatment BMP Type Constructed wetlands, extended wet detention, extended dry detention, or other comparable proprietary BMP. If BMP includes multiple modules (e.g. forebay and main basin), provide separate estimates for storage	DA DMA BMP Type		DA DMA BMP Type (Use additional for for more BMPs,	
and pollutants treated in each module.	Forebay	Basin	Forebay	В
¹ Pollutants addressed with BMP forebay and basin List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in Table 5-5 of the TGD for WQMP			\bigcirc	
2 Bottom width (ft)			•	
3 Bottom length (ft)				
4 Bottom area (ft ²) A _{bottom} = Item 2 * Item 3				
5 Side slope (ft/ft)				
⁶ Depth of storage (ft)				
7 Water surface area (ft ²) A _{surface} =(Item 2 + (2 * Item 5 * Item 6)) * (Item 3 + (2 * Item 5 * Item 6))				
8 Storage volume (ft ³) For BMP with a forebay, ensure fraction of total storage is within ranges specified in BMP specific fact sheets, see Table 5-6 of the TGD for WQMP for reference to BMP design details V =Item 6 / 3 * [Item 4 + Item 7 + (Item 4 * Item 7)^0.5]				
⁹ Drawdown Time (hrs) Copy Item 6 from Form 2.1				
10 Outflow rate (cfs) Q _{EMP} = (Item 8 _{forebax} + Item 8 _{basin}) / (Item 9 * 3600)				
11 Duration of design storm event (hrs)				
12 Biotreated Volume (ft ³) V blatreated = (Item 8 _{foreboy} + Item 8 _{basin}) +(Item 10 * Item 11 * 3600)	C)	(0
13 Total biotreated volume from constructed wetlands, extended d	ry detention, or	extended wet dete	ntion : 0	

Biotreatment BMP Type Vegetated swale, vegetated filter strip, or other comparable proprietary BMP	DA DMA BMP Type	DA DMA BMP Type	DA DMA BMP Type (Use additional f for more BMF
¹ Pollutants addressed with BMP List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in TGD Table 5-5			6
2 Flow depth for water quality treatment (ft) BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details			
³ Bed slope (ft/ft) BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details	X		
⁴ Manning's roughness coefficient			
⁵ Bottom width (ft) b _w = (Form 4.3-5 Item 6 * Item 4) / (1.49 * Item 2 ^{^167} * Item 3 ^{^05})			
⁶ Side Slope (ft/ft) BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details			
7 Cross sectional area (ft^2) A = (Item 5 * Item 2) + (Item 6 * Item 2 ²)			
8 Water quality flow velocity (ft/sec) V = Form 4.3-5 Item 6 / Item 7			
 ⁹ Hydraulic residence time (min) Pollutant specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details 			
10 Length of flow based BMP (ft) L = Item 8 * Item 9 * 60			
¹¹ Water surface area at water quality flow depth (ft ²) SA _{top} = (Item 5 + (2 * Item 2 * Item 6)) * Item 10			

4.3.5 Conformance Summary

<

Complete Form 4.3-9 to demonstrate how on-site LID DCV is met with proposed site design hydrologic source control, infiltration, harvest and use, and/or biotreatment BMP. The bottom line of the form is used to describe the basis for infeasibility determination for on-site LID BMP to achieve full LID DCV, and provides methods for computing remaining volume to be addressed in an alternative compliance plan. If the project has more than one outlet, then complete additional versions of this form for each outlet.

Form 4.3-9 Conformance Summary and Alternative
Compliance Volume Estimate (DA 1)
¹ Total LID DCV for the Project DA-1 (ft ³): 17,178 Copy Item 7 in Form 4.2-1
² On-site retention with site design hydrologic source control LID BMP (ft ³): 989 Copy Item 30 in Form 4.3-2
³ On-site retention with LID infiltration BMP (ft ³): 17,178 Copy Item 16 in Form 4.3-3
4 On-site retention with LID harvest and use BMP (ft ³): 0 Copy Item 9 in Form 4.3-4
⁵ On-site biotreatment with volume based biotreatment BMP (ft ³): 0 Copy Item 3 in Form 4.3-5
⁶ Flow capacity provided by flow based biotreatment BMP (cfs): 0 Copy Item 6 in Form 4.3-5
⁷ LID BMP performance criteria are achieved if answer to any of the following is "Yes":
• Full retention of LID DCV with site design HSC, infiltration, or harvest and use BMP: Yes No I fyes, sum of Items 2, 3, and 4 is greater than Item 1
• Combination of on-site retention BMPs for a portion of the LID DCV and volume-based biotreatment BMP that
address all pollutants of concern for the remaining LID DCV: Yes 🗌 No 🗌 If yes, a) sum of Items 2, 3, 4, and 5 is greater than Item 1, and Items 2, 3 and 4 are maximized; or b) Item 6 is greater than Form
4.35 Item 6 and Items 2, 3, 4, and 5 is greater than item 1, and items 2, 3 and 4 are maximized; or b) item 6 is greater than Form 4.35 Item 6 and Items 2, 3 and 4 are maximized
 On-site retention and infiltration is determined to be infeasible and biotreatment BMP provide biotreatment for all
pollutants of concern for full LID DCV: Yes No I If yes, Form 4.3-1 Items 7 and 8 were both checked yes
IJ yes, Form 4.3-1 herris 7 and 8 were bour checked yes
8 Is the LID SCI / is a stable of the second the second the second term is the second terms of the second terms the
• If the LID DCV is not achieved by any of these means, then the project may be allowed to develop an alternative
compliance plan. Check box that describes the scenario which caused the need for alternative compliance:
Combination of HSC, retention and infiltration, harvest and use, and biotreatment BMPs provide less than full LID DCV contures
capture: Checked yes for Form 4.3-5 Item 7, Item 6 is zero, and sum of Items 2, 3, 4, and 5 is less than Item 1. If so, apply water quality credits
and calculate volume for alternative compliance, $V_{alt} = (Item 1 - Item 2 - Item 3 - Item 4 - Item 5) * (100 - Form 2.4-1 Item 2)%$
• An approved Watershed Action Plan (WAP) demonstrates that water quality and hydrologic impacts of urbanization
are more effective when managed in at an off-site facility: Attach appropriate WAP section, including technical documentation, showing effectiveness comparisons for the project site and
regional watershed

4.3.6 Hydromodification Control BMP

Use Form 4.3-10 to compute the remaining runoff volume retention, after LID BMP are implemented, needed to address HCOC, and the increase in time of concentration and decrease in peak runoff necessary to meet targets for protection of waterbodies with a potential HCOC. Describe hydromodification control BMP that address HCOC, which may include off-site BMP and/or in-stream controls. Section 5.6 of the TGD for WQMP provides additional details on selection and evaluation of hydromodification control BMP.

1 Volume reduction needed for HCOC performance criteria (ft ³): (Form 4.2-2 Item 4 * 0.95) – Form 4.2-2 Item	01	² On-site retention with site design hydrologic source control, infiltration harvest and use LID BMP (ft ³): Sum of Form 4.3-9 Items 2, 3, and 4 option to increase implementation of on-site retention in Forms 4.3-2, 4.3-3, and excess of LID DCV toward achieving HCOC volume reduction
3 Remaining volume for HCOC volume capture (ft ³): Item 1 – Item 2	(ft³): so, attac	ne capture provided by incorporating additional on-site or off-site retenti Existing downstream BMP may be used to demonstrate additional volume co In to this WQMP a hydrologic analysis showing how the additional volume would b 2-yr storm event for the regional watershed)
⁵ If Item 4 is less than Item 3, incorporative hydromodification Attach in-stream	ate in-stre control BM	am controls on downstream waterbody segment to prevent impacts due IP selection and evaluation to this WQIMP
off-site retention BMP BMP upstream of a waterbody hydrograph attenuation (if so, than the addition time of conce Increase time of concentratio increasing cross-sectional a Incorporate appropriate in-st	e of conce y segment w show that entration n in by presu area and r ream con n approve to 5%: Y	ntration achieved by proposed LID site design, LID BMP, and additional or with a potential HCOC may be used to demonstrate increased time of concentration the hydraulic residence time provided in BMP for a 2-year storm event is equal or g equirement in Form 4.2-4 Item 15) erving pre-developed flow path and/or increase travel time by reducing sl bughness for proposed on-site conveyance facilities trols for downstream waterbody segment to prevent impacts due to ed and signed by a licensed engineer in the State of California
Demonstrate reduction in per- retention BMPs BMPs upstream of a waterboard	ak runoff a ly segment	achieved by proposed LID site design, LID BMPs, and additional on-site or with a potential HCOC may be used to demonstrate additional peak runoff reductio tach to this WQMP, a hydrograph analysis showing how the peak runoff would be
 Incorporate appropriate in-st 		trols for downstream waterbody segment to prevent impacts due to ed and signed by a licensed engineer in the State of California

4.4 Alternative Compliance Plan (if applicable)

Describe an alternative compliance plan (if applicable) for projects not fully able to infiltrate, harvest and use, or biotreat the DCV via on-site LID practices. A project proponent must develop an alternative compliance plan to address the remainder of the LID DCV. Depending on project type some projects may qualify for water quality credits that can be applied to reduce the DCV that must be treated prior to development of an alternative compliance plan (see Form 2.4-1, Water Quality Credits). Form 4.3-9 Item 8 includes instructions on how to apply water quality credits when computing the DCV that must be met through alternative compliance. Alternative compliance plans may include one or more of the following elements:

- On-site structural treatment control BMP All treatment control BMP should be located as close to possible to the pollutant sources and should not be located within receiving waters;
- Off-site structural treatment control BMP Pollutant removal should occur prior to discharge of runoff to receiving waters;
- Urban runoff fund or In-lieu program, if available

Depending upon the proposed alternative compliance plan, approval by the executive officer may or may not be required (see Section 6 of the TGD for WQMP).

Section 5 Inspection and Maintenance Responsibility for Post Construction BMP

All BMP included as part of the project WQMP are required to be maintained through regular scheduled inspection and maintenance (refer to Section 8, Post Construction BMP Requirements, in the TGD for WQMP). Fully complete Form 5-1 summarizing all BMP included in the WQMP. Attach additional forms as needed. The WQMP shall also include a detailed Operation and Maintenance Plan for all BMP and may require a Maintenance Agreement (consult the jurisdiction's LIP). If a Maintenance Agreement is required, it must also be attached to the WQMP.

Form 5-1 BMP Inspection and Maintenance					
(use additional forms as necessary)					
ВМР	Reponsible Party(s)	Inspection/Maintenance Activities Required	Minimum Frequency of Activities		
Education of Property Owners, Tenants & Occupants on Stormwater BMPs	Property Owner	The Property Owner will provide BMP educational information materials to all employees and occupants of site.	Within 3 months of hire and annually thereafter		
Activity Restrictions	Property Owner	Inspect for proper site usage and pesticide application.	As needed		
Landscape Management BMPs	Property Owner	Owner will ensure landscaping and irrigation is properly maintained.	Bi-weekly		
BMP Maintenance	Property Owner	Inspect, clean, repair and maintain BMP.	Annually		
Local Water Quality Ordinances	Property Owner	Owner will comply with all local water quality ordinances.	As needed		
Litter/Debris Control Program	Property Owner	Inspect and clean site for trash and debris	Weekly		
Employee Training	Property Owner	Educational materials on general housekeeping practices for the protection of storm water quality shall be provided to employees.	Within 3 months of hire and annually thereafter		
Catch Basin Inserts	Property Owner	Inspect for trash, debris and damage	Monthly		

NPDES PermitsProperty OwnerApproval and implementation of this WQMP and SWPPP.On goingProvide storm drain system stenciling and signageProperty OwnerInspect storm drain system stenciling and signage for clarity and legibility. Relabel as needed.Annually, repair neededTrash Storage AreaProperty OwnerInspect, clean, and repair as needed.As neededUse EfficientImage: Storage AreaImage: Storage AreaImage: Storage AreaAs needed
storm drain system stenciling and signageProperty OwnerInspect storm drain system stenciling and signage for clarity and legibility. Relabel as needed.Annually, repair neededTrash Storage AreaProperty OwnerInspect, clean, and repair as needed.As neededUse Efficient </td
Area Property Owner Inspect, clean, and repair as needed. As needed Use Efficient
Irrigation System and Landscape DesignProperty OwnerInstall irrigation systems with timing devices to avoid overwatering. Repair as neededAs needed
Finish grade of landscaped areas at a minimum of 1-2 inchesProperty OwnerLandscape areas will be a minimum of 1 inch below adjacent impervious areas.N/Abelow top of curb, sidewalk, or pavementProperty OwnerLandscape areas will be a minimum of 1 inch below adjacent impervious areas.N/A

Section 6 WQMP Attachments

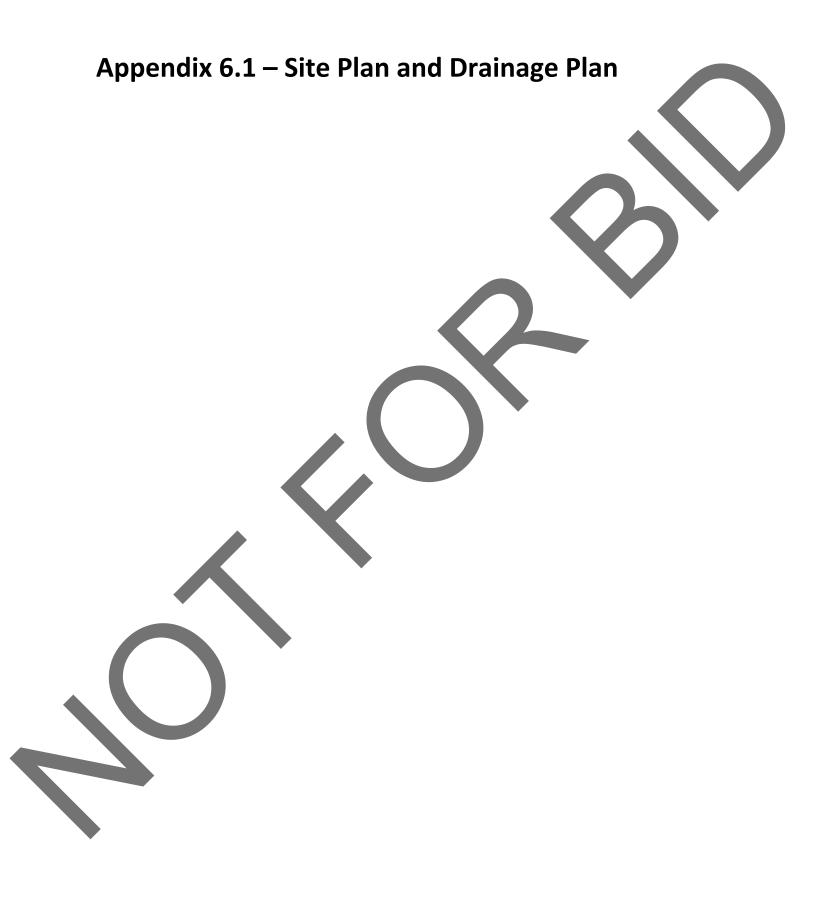
6.1. Site Plan and Drainage Plan

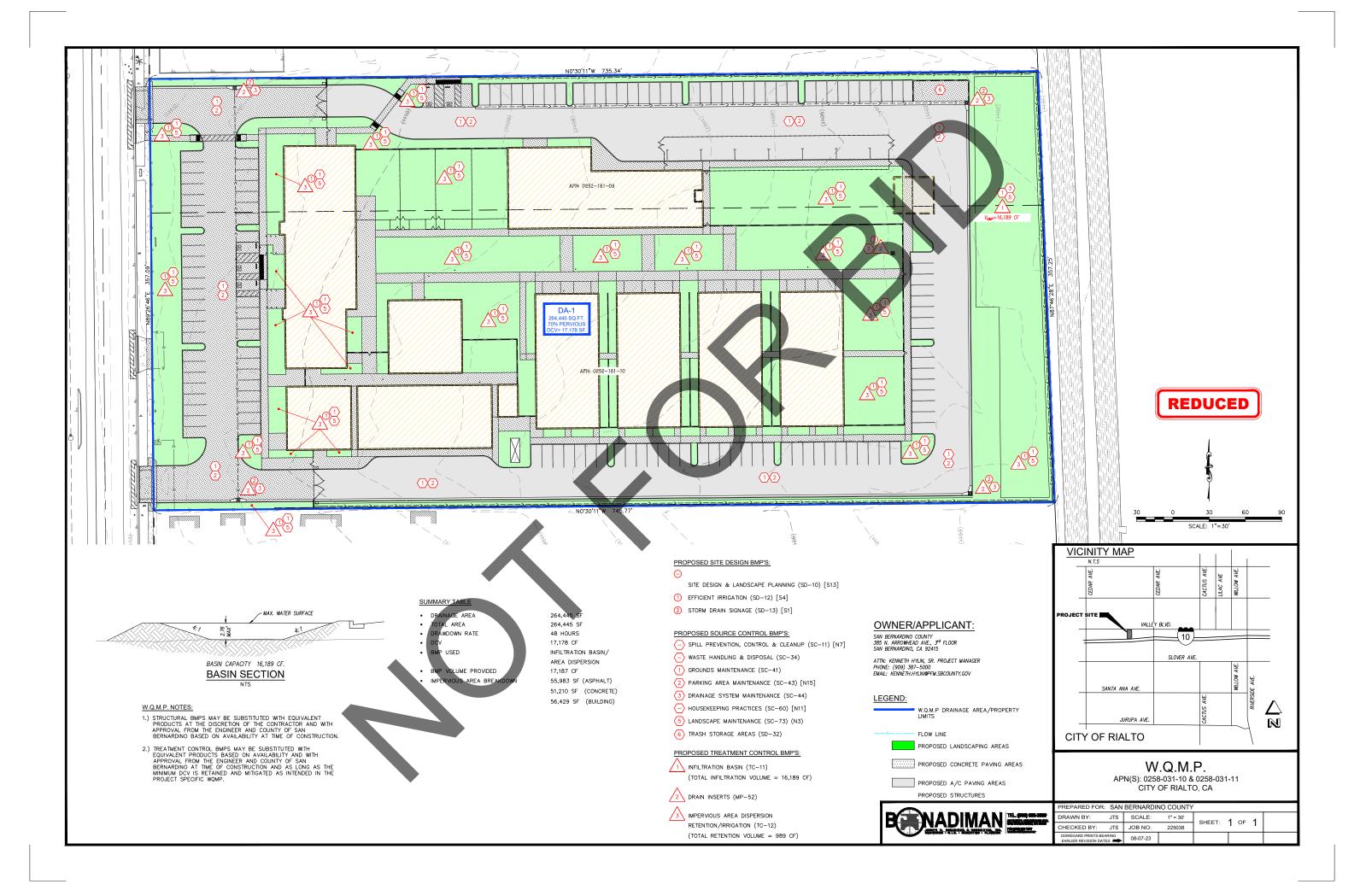
Include a site plan and drainage plan sheet set containing the following minimum information:

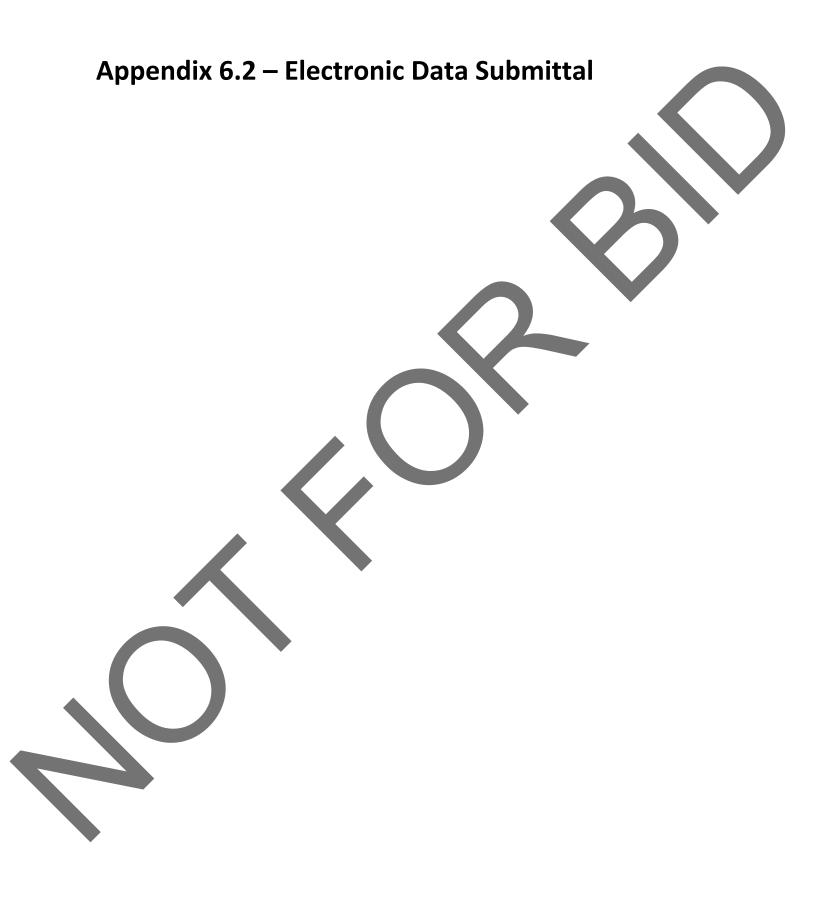
- Project location
- Site boundary
- Land uses and land covers, as applicable
- Suitability/feasibility constraints
- Structural Source Control BMP locations
- Site Design Hydrologic Source Control BMP locations
- LID BMP details
- Drainage delineations and flow information
- Drainage connections

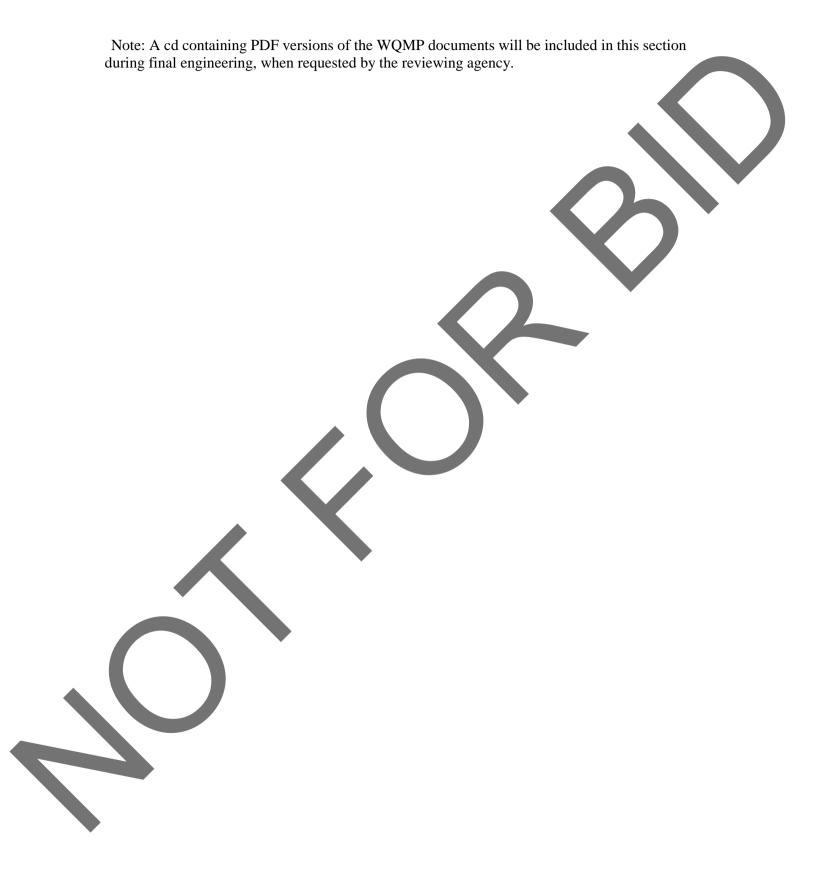
6.2 Electronic Data Submittal

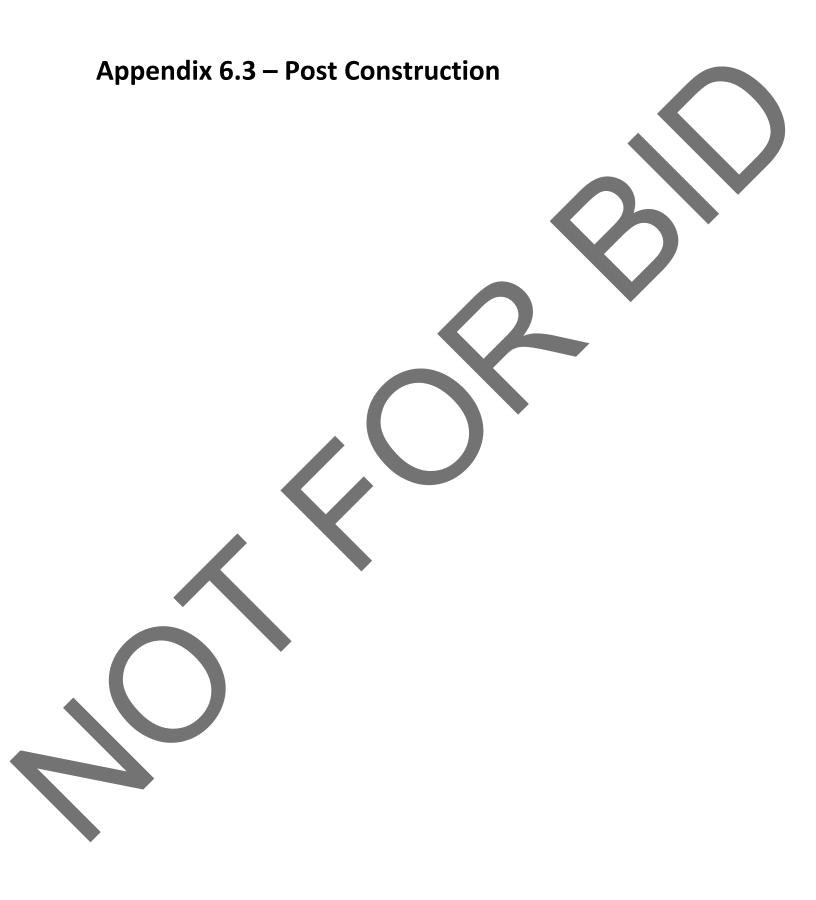
Minimum requirements include submittal of PDF exhibits in addition to hard copies. Format must not require specialized software to open. If the local jurisdiction requires specialized electronic document formats (as described in their local Local Implementation Plan), this section will describe the contents (e.g., layering, nomenclature, geo-referencing, etc.) of these documents so that they may be interpreted efficiently and accurately.


6.3 Post Construction


Attach all O&M Plans and Maintenance Agreements for BMP to the WQMP.


- O&M Plan
 - o BMP Educational Materials
- Maintenance Agreement(s)
 - Activity Restriction C, C&R's & Lease Agreements


6.4 Other Supporting Documentation


- San Bernardino County Watershed Mapping Tool Data
- NOAA Rainfall Data
- Soils information

Drainage System Maintenance

Objectives

- Cover
- Contain
- Educate

Description

As a consequence of its function, the stormwater conveyance system collects and transports urban runoff and stormwater that may contain certain pollutants. The protocols in this fact sheet are intended to reduce pollutants reaching receiving waters through proper conveyance system operation and maintenance.

Approach

Pollution Prevention

Maintain catch basins, stormwater inlets, and other stormwater conveyance structures on a regular basis to remove pollutants, reduce high pollutant concentrations during the first flush of storms, prevent clogging of the downstream conveyance system, restore catch basins' sediment trapping capacity, and ensure the system functions properly hydraulically to avoid flooding.

Suggested Protocols

Catch Basins/Inlet Structures

Staff should regularly inspect facilities to ensure compliance with the following:

- Immediate repair of any deterioration threatening structural integrity.
- Cleaning before the sump is 40% full. Catch basins should be cleaned as frequently as needed to meet this standard.
- Stenciling of catch basins and inlets (see SC34 Waste Handling and Disposal).

CASOA California Stormwater Quality Association

January 2003

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	\checkmark
Metals	
Bacteria	\checkmark
Oil and Grease	
Organics	

Site Design & Landscape Planning SD-10

Description

Each project site possesses unique topographic, hydrologic, and vegetative features, some of which are more suitable for development than others. Integrating and incorporating appropriate landscape planning methodologies into the project design is the most effective action that can be done to minimize surface and groundwater contamination from stormwater.

Approach

Landscape planning should couple consideration of land suitability for urban uses with consideration of community goals and projected growth. Project plan designs should conserve natural areas to the extent possible, maximize natural water storage and infiltration opportunities, and protect slopes and channels.

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment.

Design Considerations

Design requirements for site design and landscapes planning should conform to applicable standards and specifications of agencies with jurisdiction and be consistent with applicable General Plan and Local Area Plan policies.

Designing New Installations

Begin the development of a plan for the landscape unit with attention to the following general principles:

- Formulate the plan on the basis of clearly articulated community goals. Carefully identify conflicts and choices between retaining and protecting desired resources and community growth.
- Map and assess land suitability for urban uses. Include the following landscape features in the assessment: wooded land, open unwooded land, steep slopes, erosion-prone soils, foundation suitability, soil suitability for waste disposal, aquifers, aquifer recharge areas, wetlands, floodplains, surface waters, agricultural lands, and various categories of urban land use. When appropriate, the assessment can highlight outstanding local or regional resources that the community determines should be protected (e.g., a scenic area, recreational area, threatened species habitat, farmland, fish run). Mapping and assessment should recognize not only these resources but also additional areas needed for their sustenance.

Project plan designs should conserve natural areas to the extent possible, maximize natural water storage and infiltration opportunities, and protect slopes and channels.

Conserve Natural Areas during Landscape Planning

If applicable, the following items are required and must be implemented in the site layout during the subdivision design and approval process, consistent with applicable General Plan and Local Area Plan policies:

- Cluster development on least-sensitive portions of a site while leaving the remaining land in a natural undisturbed condition.
- Limit clearing and grading of native vegetation at a site to the minimum amount needed to build lots, allow access, and provide fire protection.
- Maximize trees and other vegetation at each site by planting additional vegetation, clustering tree areas, and promoting the use of native and/or drought tolerant plants.
- Promote natural vegetation by using parking lot islands and other landscaped areas.
- Preserve riparian areas and wetlands.

Maximize Natural Water Storage and Infiltration Opportunities Within the Landscape Unit

Promote the conservation of forest cover. Building on land that is already deforested affects basin hydrology to a lesser extent than converting forested land. Loss of forest cover reduces interception storage, detention in the organic forest floor layer, and water losses by evapotranspiration, resulting in large peak runoff increases and either their negative effects or the expense of countering them with structural solutions.

Maintain natural storage reservoirs and drainage corridors, including depressions, areas of permeable soils, swales, and intermittent streams. Develop and implement policies and

Site Design & Landscape Planning SD-10

regulations to discourage the clearing, filling, and channelization of these features. Utilize them in drainage networks in preference to pipes, culverts, and engineered ditches.

 Evaluating infiltration opportunities by referring to the stormwater management manual for the jurisdiction and pay particular attention to the selection criteria for avoiding groundwater contamination, poor soils, and hydrogeological conditions that cause these facilities to fail. If necessary, locate developments with large amounts of impervious surfaces or a potential to produce relatively contaminated runoff away from groundwater recharge areas.

Protection of Slopes and Channels during Landscape Design

- Convey runoff safely from the tops of slopes.
- Avoid disturbing steep or unstable slopes.
- Avoid disturbing natural channels.
- Stabilize disturbed slopes as quickly as possible.
- Vegetate slopes with native or drought tolerant vegetation.
- Control and treat flows in landscaping and/or other controls prior to reaching existing natural drainage systems.
- Stabilize temporary and permanent channel crossings as quickly as possible, and ensure that increases in run-off velocity and frequency caused by the project do not erode the channel.
- Install energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels in accordance with applicable specifications to minimize erosion. Energy dissipaters shall be installed in such a way as to minimize impacts to receiving waters.
- Line on-site conveyance channels where appropriate, to reduce erosion caused by increased flow velocity due to increases in tributary impervious area. The first choice for linings should be grass or some other vegetative surface, since these materials not only reduce runoff velocities, but also provide water quality benefits from filtration and infiltration. If velocities in the channel are high enough to erode grass or other vegetative linings, riprap, concrete, soil cement, or geo-grid stabilization are other alternatives.

Consider other design principles that are comparable and equally effective.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of " redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

SD-10 Site Design & Landscape Planning

Redevelopment may present significant opportunity to add features which had not previously been implemented. Examples include incorporation of depressions, areas of permeable soils, and swales in newly redeveloped areas. While some site constraints may exist due to the status of already existing infrastructure, opportunities should not be missed to maximize infiltration, slow runoff, reduce impervious areas, disconnect directly connected impervious areas.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Stormwater Management Manual for Western Washington, Washington State Department of Ecology, August 2001.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

Efficient Irrigation

Design Objectives

- Maximize Infiltration
- Provide RetentionSlow Runoff

Minimize Impervious Land Coverage Prohibit Dumping of Imprope Materials

Contain Pollutants Collect and Convey

Description

Irrigation water provided to landscaped areas may result in excess irrigation water being conveyed into stormwater drainage systems.

Approach

Project plan designs for development and redevelopment should include application methods of irrigation water that minimize runoff of excess irrigation water into the stormwater conveyance system.

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment. (Detached residential single-family homes are typically excluded from this requirement.)

Design Considerations

Designing New Installations

The following methods to reduce excessive irrigation runoff should be considered, and incorporated and implemented where determined applicable and feasible by the Permittee:

Employ rain-triggered shutoff devices to prevent irrigation after precipitation.

Design irrigation systems to each landscape area's specific water requirements.

- Include design featuring flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines.
- Implement landscape plans consistent with County or City water conservation resolutions, which may include provision of water sensors, programmable irrigation times (for short cycles), etc.

- Design timing and application methods of irrigation water to minimize the runoff of excess irrigation water into the storm water drainage system.
- Group plants with similar water requirements in order to reduce excess irrigation runoff and promote surface filtration. Choose plants with low irrigation requirements (for example, native or drought tolerant species). Consider design features such as:
 - Using mulches (such as wood chips or bar) in planter areas without ground cover to minimize sediment in runoff
 - Installing appropriate plant materials for the location, in accordance with amount of sunlight and climate, and use native plant materials where possible and/or as recommended by the landscape architect
 - Leaving a vegetative barrier along the property boundary and interior watercourses, to act as a pollutant filter, where appropriate and feasible
 - Choosing plants that minimize or eliminate the use of fertilizer or pesticides to sustain growth
- Employ other comparable, equally effective methods to reduce irrigation water runoff.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of "redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

Storm Drain Signage

Design Objectives

Description

Waste materials dumped into storm drain inlets can have severe impacts on receiving and ground waters. Posting notices regarding discharge prohibitions at storm drain inlets can prevent waste dumping. Storm drain signs and stencils are highly visible source controls that are typically placed directly adjacent to storm drain inlets.

Approach

The stencil or affixed sign contains a brief statement that prohibits dumping of improper materials into the urban runoff conveyance system. Storm drain messages have become a popular method of alerting the public about the effects of and the prohibitions against waste disposal.

Suitable Applications

Stencils and signs alert the public to the destination of pollutants discharged to the storm drain. Signs are appropriate in residential, commercial, and industrial areas, as well as any other area where contributions or dumping to storm drains is likely.

Design Considerations

Storm drain message markers or placards are recommended at all storm drain inlets within the boundary of a development project. The marker should be placed in clear sight facing toward anyone approaching the inlet from either side. All storm drain inlet locations should be identified on the development site map.

Designing New Installations

The following methods should be considered for inclusion in the project design and show on project plans:

 Provide stenciling or labeling of all storm drain inlets and catch basins, constructed or modified, within the project area with prohibitive language. Examples include "NO DUMPING

- DRAINS TO OCEAN" and/or other graphical icons to discourage illegal dumping.

 Post signs with prohibitive language and/or graphical icons, which prohibit illegal dumping at public access points along channels and creeks within the project area.

Note - Some local agencies have approved specific signage and/or storm drain message placards for use. Consult local agency stormwater staff to determine specific requirements for placard types and methods of application.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. If the project meets the definition of "redevelopment", then the requirements stated under " designing new installations" above should be included in all project design plans.

Additional Information

Maintenance Considerations

 Legibility of markers and signs should be maintained. If required by the agency with jurisdiction over the project, the owner/operator or homeowner's association should enter into a maintenance agreement with the agency or record a deed restriction upon the property title to maintain the legibility of placards or signs.

Placement

- Signage on top of curbs tends to weather and fade.
- Signage on face of curbs tends to be worn by contact with vehicle tires and sweeper brooms.

Supplemental Information

Examples

 Most MS4 programs have storm drain signage programs. Some MS4 programs will provide stencils, or arrange for volunteers to stencil storm drains as part of their outreach program.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

Trash storage areas are areas where a trash receptacle (s) are located for use as a repository for solid wastes. Stormwater runoff from areas where trash is stored or disposed of can be polluted. In addition, loose trash and debris can be easily transported by water or wind into nearby storm drain inlets, channels, and/or creeks. Waste handling operations that may be sources of stormwater pollution include dumpsters, litter control, and waste piles.

Approach

This fact sheet contains details on the specific measures required to prevent or reduce pollutants in stormwater runoff associated with trash storage and handling. Preventative measures including enclosures, containment structures, and impervious pavements to mitigate spills, should be used to reduce the likelihood of contamination.

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment. (Detached residential single-family homes are typically excluded from this requirement.)

Design Considerations

Design requirements for waste handling areas are governed by Building and Fire Codes, and by current local agency ordinances and zoning requirements. The design criteria described in this fact sheet are meant to enhance and be consistent with these code and ordinance requirements. Hazardous waste should be handled in accordance with legal requirements established in Title 22, California Code of Regulation.

Wastes from commercial and industrial sites are typically hauled by either public or commercial carriers that may have design or access requirements for waste storage areas. The design criteria in this fact sheet are recommendations and are not intended to be in conflict with requirements established by the waste hauler. The waste hauler should be contacted prior to the design of your site trash collection areas. Conflicts or issues should be discussed with the local agency.

Designing New Installations

Trash storage areas should be designed to consider the following structural or treatment control BMPs:

- Design trash container areas so that drainage from adjoining roofs and pavement is diverted around the area(s) to avoid run-on. This might include berming or grading the waste handling area to prevent run-on of stormwater.
- Make sure trash container areas are screened or walled to prevent off-site transport of trash.

Maximize Infiltration

Provide Retention Slow Runoff

Minimize Impervious Land

Coverage

Prohibit Dumping of Improp Materials

Contain Pollutants

Collect and Convey

- Use lined bins or dumpsters to reduce leaking of liquid waste.
- Provide roofs, awnings, or attached lids on all trash containers to minimize direct precipitation and prevent rainfall from entering containers.
- Pave trash storage areas with an impervious surface to mitigate spills.
- Do not locate storm drains in immediate vicinity of the trash storage area.
- Post signs on all dumpsters informing users that hazardous materials are not to be disposed of therein.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of " redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

Additional Information

Maintenance Considerations

The integrity of structural elements that are subject to damage (i.e., screens, covers, and signs) must be maintained by the owner/operator. Maintenance agreements between the local agency and the owner/operator may be required. Some agencies will require maintenance deed restrictions to be recorded of the property title. If required by the local agency, maintenance agreements or deed restrictions must be executed by the owner/operator before improvement plans are approved.

Other Resources


A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

Building & Grounds Maintenance

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Description

Stormwater runoff from building and grounds maintenance activities can be contaminated with toxic hydrocarbons in solvents, fertilizers and pesticides, suspended solids, heavy metals, abnormal pH, and oils and greases. Utilizing the protocols in this fact sheet will prevent or reduce the discharge of pollutants to stormwater from building and grounds maintenance activities by washing and cleaning up with as little water as possible, following good landscape management practices, preventing and cleaning up spills immediately, keeping debris from entering the storm drains, and maintaining the stormwater collection system.

Approach

Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

Pollution Prevention

- Switch to non-toxic chemicals for maintenance when possible.
- Choose cleaning agents that can be recycled.
- Encourage proper lawn management and landscaping, including use of native vegetation.

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	
Metals	\checkmark
Bacteria	\checkmark
Oil and Grease	
Organics	

- Encourage use of Integrated Pest Management techniques for pest control.
- Encourage proper onsite recycling of yard trimmings.
- Recycle residual paints, solvents, lumber, and other material as much as possible.

Suggested Protocols

Pressure Washing of Buildings, Rooftops, and Other Large Objects

- In situations where soaps or detergents are used and the surrounding area is paved, pressure washers must use a water collection device that enables collection of wash water and associated solids. A sump pump, wet vacuum or similarly effective device must be used to collect the runoff and loose materials. The collected runoff and solids must be disposed of properly.
- If soaps or detergents are not used, and the surrounding area is paved, wash runoff does not have to be collected but must be screened. Pressure washers must use filter fabric or some other type of screen on the ground and/or in the catch basin to trap the particles in wash water runoff.
- If you are pressure washing on a grassed area (with or without soap), runoff must be dispersed as sheet flow as much as possible, rather than as a concentrated stream. The wash runoff must remain on the grass and not drain to pavement.

Landscaping Activities

- Dispose of grass clippings, leaves, sticks, or other collected vegetation as garbage, or by composting. Do not dispose of collected vegetation into waterways or storm drainage systems.
- Use mulch or other erosion control measures on exposed soils.

Building Repair, Remodeling, and Construction

- Do not dump any toxic substance or liquid waste on the pavement, the ground, or toward a storm drain.
- Use ground or drop cloths underneath outdoor painting, scraping, and sandblasting work, and properly dispose of collected material daily.
- Use a ground cloth or oversized tub for activities such as paint mixing and tool cleaning.
- Clean paintbrushes and tools covered with water-based paints in sinks connected to sanitary sewers or in portable containers that can be dumped into a sanitary sewer drain. Brushes and tools covered with non-water-based paints, finishes, or other materials must be cleaned in a manner that enables collection of used solvents (e.g., paint thinner, turpentine, etc.) for recycling or proper disposal.
 - Use a storm drain cover, filter fabric, or similarly effective runoff control mechanism if dust, grit, wash water, or other pollutants may escape the work area and enter a catch basin. This is particularly necessary on rainy days. The containment device(s) must be in place at the beginning of the work day, and accumulated dirty runoff and solids must be collected and disposed of before removing the containment device(s) at the end of the work day.

- If you need to de-water an excavation site, you may need to filter the water before discharging to a catch basin or off-site. If directed off-site, you should direct the water through hay bales and filter fabric or use other sediment filters or traps.
- Store toxic material under cover during precipitation events and when not in use. A cover would include tarps or other temporary cover material.

Mowing, Trimming, and Planting

- Dispose of leaves, sticks, or other collected vegetation as garbage, by composting or at a
 permitted landfill. Do not dispose of collected vegetation into waterways or storm drainage
 systems.
- Use mulch or other erosion control measures when soils are exposed.
- Place temporarily stockpiled material away from watercourses and drain inlets, and berm or cover stockpiles to prevent material releases to the storm drain system.
- Consider an alternative approach when bailing out muddy water: do not put it in the storm drain; pour over landscaped areas.
- Use hand weeding where practical.

Fertilizer and Pesticide Management

- Follow all federal, state, and local laws and regulations governing the use, storage, and disposal of fertilizers and pesticides and training of applicators and pest control advisors.
- Use less toxic pesticides that will do the job when applicable. Avoid use of copper-based pesticides if possible.
- Do not use pesticides if rain is expected.
- Do not mix or prepare pesticides for application near storm drains.
- Use the minimum amount needed for the job.
- Calibrate fertilizer distributors to avoid excessive application.
 - Employ techniques to minimize off-target application (e.g., spray drift) of pesticides, including consideration of alternative application techniques.
 - Apply pesticides only when wind speeds are low.
 - Fertilizers should be worked into the soil rather than dumped or broadcast onto the surface.
- Irrigate slowly to prevent runoff and then only as much as is needed.
- Clean pavement and sidewalk if fertilizer is spilled on these surfaces before applying irrigation water.
- Dispose of empty pesticide containers according to the instructions on the container label.

- Use up the pesticides. Rinse containers, and use rinse water as product. Dispose of unused pesticide as hazardous waste.
- Implement storage requirements for pesticide products with guidance from the local fire department and County Agricultural Commissioner. Provide secondary containment for pesticides.

Inspection

Inspect irrigation system periodically to ensure that the right amount of water is being
applied and that excessive runoff is not occurring. Minimize excess watering and repair
leaks in the irrigation system as soon as they are observed.

Training

- Educate and train employees on pesticide use and in pesticide application techniques to prevent pollution.
- Train employees and contractors in proper techniques for spill containment and cleanup.
- Be sure the frequency of training takes into account the complexity of the operations and the nature of the staff.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Place a stockpile of spill cleanup materials, such as brooms, dustpans, and vacuum sweepers (if desired) near the storage area where it will be readily accessible.
- Have employees trained in spill containment and cleanup present during the loading/unloading of dangerous wastes, liquid chemicals, or other materials.
- Familiarize employees with the Spill Prevention Control and Countermeasure Plan.
- Clean up spills immediately.

Other Considerations

Alternative pest/weed controls may not be available, suitable, or effective in many cases.

Requirements

Costs

• Cost will vary depending on the type and size of facility.

• Overall costs should be low in comparison to other BMPs.

Maintenance

Sweep paved areas regularly to collect loose particles. Wipe up spills with rags and other absorbent material immediately, do not hose down the area to a storm drain.

SC-41

Supplemental Information

Further Detail of the BMP

Fire Sprinkler Line Flushing

Building fire sprinkler line flushing may be a source of non-stormwater runoff pollution. The water entering the system is usually potable water, though in some areas it may be non-potable reclaimed wastewater. There are subsequent factors that may drastically reduce the quality of the water in such systems. Black iron pipe is usually used since it is cheaper than potable piping, but it is subject to rusting and results in lower quality water. Initially, the black iron pipe has an oil coating to protect it from rusting between manufacture and installation; this will contaminate the water from the first flush but not from subsequent flushes. Nitrates, polyphosphates and other corrosion inhibitors, as well as fire suppressants and antifreeze may be added to the sprinkler water system. Water generally remains in the sprinkler system a long time (typically a year) and between flushes may accumulate iron, manganese, lead, copper, nickel, and zinc. The water generally becomes anoxic and contains living and dead bacteria and breakdown products from chlorination. This may result in a significant BOD problem and the water often smells. Consequently dispose fire sprinkler line flush water into the sanitary sewer. Do not allow discharge to storm drain or infiltration due to potential high levels of pollutants in fire sprinkler line water.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html

Clark County Storm Water Pollution Control Manual <u>http://www.co.clark.wa.us/pubworks/bmpman.pdf</u>

King County Storm Water Pollution Control Manual <u>http://dnr.metrokc.gov/wlr/dss/spcm.htm</u>

Mobile Cleaners Pilot Program: Final Report. 1997. Bay Area Stormwater Management Agencies Association (BASMAA). <u>http://www.basmaa.org/</u>

Pollution from Surface Cleaning Folder. 1996. Bay Area Stormwater Management Agencies Association (BASMAA). <u>http://www.basmaa.org/</u>

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org

The Storm Water Managers Resource Center <u>http://www.stormwatercenter.net/</u>

Parking/Storage Area Maintenance SC-43

Objectives

- Cover
- Contain
- Educate

Sediment

Nutrients

Trash

Metals

Bacteria

Organics

Oil and Grease

- Reduce/Minimize
- Product Substitution

Targeted Constituents

Description

Parking lots and storage areas can contribute a number of substances, such as trash, suspended solids, hydrocarbons, oil and grease, and heavy metals that can enter receiving waters through stormwater runoff or non-stormwater discharges. The protocols in this fact sheet are intended to prevent or reduce the discharge of pollutants from parking/storage areas and include using good housekeeping practices, following appropriate cleaning BMPs, and training employees.

Approach

The goal of this program is to ensure stormwater pollution prevention practices are considered when conducting activities on or around parking areas and storage areas to reduce potential for pollutant discharge to receiving waters. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

Pollution Prevention

Encourage alternative designs and maintenance strategies for impervious parking lots. (See New Development and Redevelopment BMP Handbook)

Keep accurate maintenance logs to evaluate BMP implementation.

CASOA California Stormwater Quality Association

Suggested Protocols

General

- Keep the parking and storage areas clean and orderly. Remove debris in a timely fashion.
- Allow sheet runoff to flow into biofilters (vegetated strip and swale) and/or infiltration devices.
- Utilize sand filters or oleophilic collectors for oily waste in low quantities.
- Arrange rooftop drains to prevent drainage directly onto paved surfaces.
- Design lot to include semi-permeable hardscape.
- Discharge soapy water remaining in mop or wash buckets to the sanitary sewer through a sink, toilet, clean-out, or wash area with drain.

Controlling Litter

- Post "No Littering" signs and enforce anti-litter laws.
- Provide an adequate number of litter receptacles.
- Clean out and cover litter receptacles frequently to prevent spillage.
- Provide trash receptacles in parking lots to discourage litter.
- Routinely sweep, shovel, and dispose of litter in the trash.

Surface Cleaning

- Use dry cleaning methods (e.g., sweeping, vacuuming) to prevent the discharge of pollutants into the stormwater conveyance system if possible.
- Establish frequency of public parking lot sweeping based on usage and field observations of waste accumulation.
- Sweep all parking lots at least once before the onset of the wet season.
- Follow the procedures below if water is used to clean surfaces:
 - Block the storm drain or contain runoff.
 - Collect and pump wash water to the sanitary sewer or discharge to a pervious surface. Do not allow wash water to enter storm drains.
 - Dispose of parking lot sweeping debris and dirt at a landfill.
 - Follow the procedures below when cleaning heavy oily deposits:
 - Clean oily spots with absorbent materials.
 - Use a screen or filter fabric over inlet, then wash surfaces.

Parking/Storage Area Maintenance SC-43

- Do not allow discharges to the storm drain.
- Vacuum/pump discharges to a tank or discharge to sanitary sewer.
- Appropriately dispose of spilled materials and absorbents.

Surface Repair

- Preheat, transfer or load hot bituminous material away from storm drain inlets.
- Apply concrete, asphalt, and seal coat during dry weather to prevent contamination from contacting stormwater runoff.
- Cover and seal nearby storm drain inlets where applicable (with waterproof material or mesh) and manholes before applying seal coat, slurry seal, etc. Leave covers in place until job is complete and all water from emulsified oil sealants has drained or evaporated. Clean any debris from these covered manholes and drains for proper disposal.
- Use only as much water as necessary for dust control, to avoid runoff.
- Catch drips from paving equipment that is not in use with pans or absorbent material placed under the machines. Dispose of collected material and absorbents properly.

Inspection

- Have designated personnel conduct inspections of parking facilities and stormwater conveyance systems associated with parking facilities on a regular basis.
- Inspect cleaning equipment/sweepers for leaks on a regular basis.

Training

- Provide regular training to field employees and/or contractors regarding cleaning of paved areas and proper operation of equipment.
- Train employees and contractors in proper techniques for spill containment and cleanup.

Spill Response and Prevention

• Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.

Place a stockpile of spill cleanup materials where it will be readily accessible or at a central location.

- Clean up fluid spills immediately with absorbent rags or material.
- Dispose of spilled material and absorbents properly.

Other Considerations

Limitations related to sweeping activities at large parking facilities may include high equipment costs, the need for sweeper operator training, and the inability of current sweeper technology to remove oil and grease.

Requirements

Costs

Cleaning/sweeping costs can be quite large. Construction and maintenance of stormwater structural controls can be quite expensive as well.

Maintenance

- Sweep parking lot regularly to minimize cleaning with water.
- Clean out oil/water/sand separators regularly, especially after heavy storms.
- Clean parking facilities regularly to prevent accumulated wastes and pollutants from being discharged into conveyance systems during rainy conditions.

Supplemental Information

Further Detail of the BMP

Surface Repair

Apply concrete, asphalt, and seal coat during dry weather to prevent contamination from contacting stormwater runoff. Where applicable, cover and seal nearby storm drain inlets (with waterproof material or mesh) and manholes before applying seal coat, slurry seal, etc. Leave covers in place until job is complete and all water from emulsified oil sealants has drained or evaporated. Clean any debris from these covered manholes and drains for proper disposal. Only use only as much water as is necessary for dust control to avoid runoff.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html

Clark County Storm Water Pollution Control Manual http://www.co.clark.wa.us/pubworks/bmpman.pdf

King County Storm Water Pollution Control Manual <u>http://dnr.metrokc.gov/wlr/dss/spcm.htm</u>

Pollution from Surface Cleaning Folder. 1996. Bay Area Stormwater Management Agencies Association (BASMAA). <u>http://www.basmaa.org/</u>

Oregon Association of Clean Water Agencies. Oregon Municipal Stormwater Toolbox for Maintenance Practices. June 1998.

Santa Clara Valley Urban Runoff Pollution Prevention Program <u>http://www.scvurppp.org</u>

The Storm Water Managers Resource Center <u>http://www.stormwatercenter.net/</u>

SC-44 Drainage System Maintenance

- Clean catch basins, storm drain inlets, and other conveyance structures before the wet season to remove sediments and debris accumulated during the summer.
- Conduct inspections more frequently during the wet season for problem areas where sediment or trash accumulates more often. Clean and repair as needed.
- Keep accurate logs of the number of catch basins cleaned.
- Store wastes collected from cleaning activities of the drainage system in appropriate containers or temporary storage sites in a manner that prevents discharge to the storm drain.
- Dewater the wastes if necessary with outflow into the sanitary sewer if permitted. Water should be treated with an appropriate filtering device prior to discharge to the sanitary sewer. If discharge to the sanitary sewer is not allowed, water should be pumped or vacuumed to a tank and properly disposed. Do not dewater near a storm drain or stream.

Storm Drain Conveyance System

- Locate reaches of storm drain with deposit problems and develop a flushing schedule that keeps the pipe clear of excessive buildup.
- Collect and pump flushed effluent to the sanitary sewer for treatment whenever possible.

Pump Stations

- Clean all storm drain pump stations prior to the wet season to remove silt and trash.
- Do not allow discharge to reach the storm drain system when cleaning a storm drain pump station or other facility.
- Conduct routine maintenance at each pump station.
- Inspect, clean, and repair as necessary all outlet structures prior to the wet season.

Open Channel

- Modify storm channel characteristics to improve channel hydraulics, increase pollutant removals, and enhance channel/creek aesthetic and habitat value.
- Conduct channel modification/improvement in accordance with existing laws. Any person, government agency, or public utility proposing an activity that will change the natural (emphasis added) state of any river, stream, or lake in California, must enter into a Steam or Lake Alteration Agreement with the Department of Fish and Game. The developer-applicant should also contact local governments (city, county, special districts), other state agencies (SWRCB, RWQCB, Department of Forestry, Department of Water Resources), and Federal Corps of Engineers and USFWS.

Illicit Connections and Discharges

Look for evidence of illegal discharges or illicit connections during routine maintenance of conveyance system and drainage structures:

- Is there evidence of spills such as paints, discoloring, etc?

- Are there any odors associated with the drainage system?
- Record locations of apparent illegal discharges/illicit connections?
- Track flows back to potential dischargers and conduct aboveground inspections. This can be done through visual inspection of upgradient manholes or alternate techniques including zinc chloride smoke testing, fluorometric dye testing, physical inspection testing, or television camera inspection.
- Eliminate the discharge once the origin of flow is established.
- Stencil or demarcate storm drains, where applicable, to prevent illegal disposal of pollutants. Storm drain inlets should have messages such as "Dump No Waste Drains to Stream" stenciled next to them to warn against ignorant or intentional dumping of pollutants into the storm drainage system.
- Refer to fact sheet SC-10 Non-Stormwater Discharges.

Illegal Dumping

- Inspect and clean up hot spots and other storm drainage areas regularly where illegal dumping and disposal occurs.
- Establish a system for tracking incidents. The system should be designed to identify the following:
 - Illegal dumping hot spots
 - Types and quantities (in some cases) of wastes
 - Patterns in time of occurrence (time of day/night, month, or year)
 - Mode of dumping (abandoned containers, "midnight dumping" from moving vehicles, direct dumping of materials, accidents/spills)
 - Responsible parties
- Post "No Dumping" signs in problem areas with a phone number for reporting dumping and disposal. Signs should also indicate fines and penalties for illegal dumping.
- Refer to fact sheet SC-10 Non-Stormwater Discharges.

Training

- Train crews in proper maintenance activities, including record keeping and disposal.
- Allow only properly trained individuals to handle hazardous materials/wastes.
- Have staff involved in detection and removal of illicit connections trained in the following:
 - OSHA-required Health and Safety Training (29 CFR 1910.120) plus annual refresher training (as needed).

SC-44 Drainage System Maintenance

- OSHA Confined Space Entry training (Cal-OSHA Confined Space, Title 8 and Federal OSHA 29 CFR 1910.146).
- Procedural training (field screening, sampling, smoke/dye testing, TV inspection).

Spill Response and Prevention

- Investigate all reports of spills, leaks, and/or illegal dumping promptly.
- Clean up all spills and leaks using "dry" methods (with absorbent materials and/or rags) or dig up, remove, and properly dispose of contaminated soil.
- Refer to fact sheet SC-11 Spill Prevention, Control, and Cleanup.

Other Considerations (Limitations and Regulations)

- Clean-up activities may create a slight disturbance for local aquatic species. Access to items
 and material on private property may be limited. Trade-offs may exist between channel
 hydraulics and water quality/riparian habitat. If storm channels or basins are recognized as
 wetlands, many activities, including maintenance, may be subject to regulation and
 permitting.
- Storm drain flushing is most effective in small diameter pipes (36-inch diameter pipe or less, depending on water supply and sediment collection capacity). Other considerations associated with storm drain flushing may include the availability of a water source, finding a downstream area to collect sediments, liquid/sediment disposal, and prohibition against disposal of flushed effluent to sanitary sewer in some areas.
- Regulations may include adoption of substantial penalties for illegal dumping and disposal.
- Local municipal codes may include sections prohibiting discharge of soil, debris, refuse, hazardous wastes, and other pollutants into the storm drain system.

Requirements

Costs

- An aggressive catch basin cleaning program could require a significant capital and O&M budget.
- The elimination of illegal dumping is dependent on the availability, convenience, and cost of alternative means of disposal. The primary cost is for staff time. Cost depends on how aggressively a program is implemented. Other cost considerations for an illegal dumping program include;

Purchase and installation of signs.

Rental of vehicle(s) to haul illegally-disposed items and material to landfills.

- Rental of heavy equipment to remove larger items (e.g., car bodies) from channels.
 - Purchase of landfill space to dispose of illegally-dumped items and material.

 Methods used for illicit connection detection (smoke testing, dye testing, visual inspection, and flow monitoring) can be costly and time-consuming. Site-specific factors, such as the level of impervious area, the density and ages of buildings, and type of land use will determine the level of investigation necessary.

Maintenance

- Two-person teams may be required to clean catch basins with vactor trucks
- Teams of at least two people plus administrative personnel are required to identify illicit discharges, depending on the complexity of the storm sewer system.
- Arrangements must be made for proper disposal of collected wastes.
- Technical staff are required to detect and investigate illegal dumping violations.

Supplemental Information

Further Detail of the BMP

Storm Drain Flushing

Flushing is a common maintenance activity used to improve pipe hydraulics and to remove pollutants in storm drainage systems. Flushing may be designed to hydraulically convey accumulated material to strategic locations, such as an open channel, another point where flushing will be initiated, or the sanitary sewer and the treatment facilities, thus preventing resuspension and overflow of a portion of the solids during storm events. Flushing prevents "plug flow" discharges of concentrated pollutant loadings and sediments. Deposits can hinder the designed conveyance capacity of the storm drain system and potentially cause backwater conditions in severe cases of clogging.

Storm drain flushing usually takes place along segments of pipe with grades that are too flat to maintain adequate velocity to keep particles in suspension. An upstream manhole is selected to place an inflatable device that temporarily plugs the pipe. Further upstream, water is pumped into the line to create a flushing wave. When the upstream reach of pipe is sufficiently full to cause a flushing wave, the inflated device is rapidly deflated with the assistance of a vacuum pump, thereby releasing the backed up water and resulting in the cleaning of the storm drain segment.

To further reduce impacts of stormwater pollution, a second inflatable device placed well downstream may be used to recollect the water after the force of the flushing wave has dissipated. A pump may then be used to transfer the water and accumulated material to the sanitary sewer for treatment. In some cases, an interceptor structure may be more practical or required to recollect the flushed waters.

It has been found that cleansing efficiency of periodic flush waves is dependent upon flush volume, flush discharge rate, sewer slope, sewer length, sewer flow rate, sewer diameter, and population density. As a rule of thumb, the length of line to be flushed should not exceed 700 feet. At this maximum recommended length, the percent removal efficiency ranges between 65-75% for organics and 55-65% for dry weather grit/inorganic material. The percent removal efficiency drops rapidly beyond that. Water is commonly supplied by a water truck, but fire hydrants can also supply water. To make the best use of water, it is recommended that reclaimed water be used or that fire hydrant line flushing coincide with storm sewer flushing.

SC-44 Drainage System Maintenance

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html

Clark County Storm Water Pollution Control Manual http://www.co.clark.wa.us/pubworks/bmpman.pdf

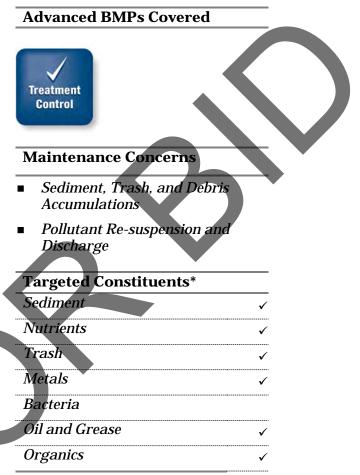
Ferguson, B.K. 1991. Urban Stream Reclamation, p. 324-322, Journal of Soil and Water Conservation.

King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spcm.htm

Oregon Association of Clean Water Agencies. Oregon Municipal Stormwater Toolbox for Maintenance Practices. June 1998.

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org

The Storm Water Managers Resource Center http://www.stormwatercenter.net


United States Environmental Protection Agency (USEPA). 2002. Pollution Prevention/Good Housekeeping for Municipal Operations Storm Drain System Cleaning. On line: <u>http://www.epa.gov/npdes/menuofbmps/poll_16.htm</u>

General Description

Drain inlet inserts, also known as catch basin, drop inlet or curb inlet inserts, are used to remove pollutants at the point of entry to the storm drain system. There are a multitude of inserts of various shapes and configurations including baffles, baskets, boxes, fabrics, sorbent media, screens, and skimmers. The effectiveness of drain inlet inserts depends on their design, application, loading, and frequency of maintenance to remove accumulated sediment, trash, and debris.

Inspection/Maintenance Considerations

Routine inspection and maintenance is necessary to maintain functionality of drain inlet inserts and to prevent re-suspension and discharge of accumulated pollutants. Maintenance activities vary depending on the type of drain inlet insert being implemented; refer to the manufacturer's recommendations for more information.

*Removal Effectiveness varies for different manufacturer designs. See New Development and Redevelopment Handbook-Section 5 for more information.

Inspection Activities	Suggested Frequency	
Verify that stormwater enters the unit and does not leak around the perimeter.	After construction.	
Inspect for sediment, trash, and debris buildup and proper functioning.	At the beginning of the wet season and after significant storms	
Maintenance Activities	Suggested Frequency	
 Remove accumulated sediment, trash, and debris. Replace sorbent media. 	At the beginning of the wet season and as necessary	·

References

California Department of Transportation. *Treatment BMP Technology Report (CTSW-RT-09-239.06)*, April, 2010. <u>http://www.dot.ca.gov/hq/env/stormwater/pdf/CTSW-RT-09-239-06.pdf.</u>

California Stormwater Quality Association. *Stormwater Best Management Practice Handbook, New Development and Redevelopment*, 2003. <u>https://www.casqa.org/resources/bmp-handbooks/new-development-redevelopment-bmp-handbook</u>.

Orange County Stormwater Program. Technical Guidance Document BMP Fact Sheets. <u>http://media.ocgov.com/gov/pw/watersheds/documents/wqmp/tgd/technical_guidance_document_bmp_fact_sheets.asp</u>.

San Francisco Public Utilities Commission, et al. San Francisco Stormwater Design Guidelines. Appendix A, Stormwater BMP Fact Sheets, June, 2010. <u>http://www.sfwater.org/modules/showdocument.aspx?documentid=2778</u>.

Tahoe Regional Planning Agency. Best Management Practices Handbook, 2012. <u>http://www.tahoebmp.org/Documents/2012%20BMP%20Handbook.pdf.</u>

U.S. Environmental Protection Agency, Post-Construction Stormwater Management in New Development and Redevelopment. BMP Fact Sheets. Available at: <u>http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm?action=min_measure_&min_measure_id=5.</u>

Ventura Countywide Stormwater Quality Management Program. *Technical Guidance Manual for Stormwater Quality Control Measures*, May, 2010. http://www.vcstormwater.org/documents/workproducts/technicalguidancemanual/201 Orevisions/Ventura%20Technical%20Guidance%20Document 5-6-10.pdf.

Stormwater Pollution Prevention

Best Management Practices for Homeowner's Associations Property Managers and Property Owners

> Your Guide To Maintaining Water Friendly Standards In Your Community

> > sbcountystormwater.org

Big Bear · Chino · Chino Hills · Colton · Fontana · Grand Terrace · Highland · Loma Linda · Montclair · Ontario · Rancho Cucamonga Redlands · Rialto · San Bernardino · San Bernardino County · San Bernardino County · San Bernardino County · San Bernardino County · San Bernardino · San Bernardino

» Table of Contents

Commercial Trash Enclosures	1
Hazardous Waste	2
Working Outdoors & Handling Spills	4
Commercial Landscape	5
Sidewalk, Plaza, Entry Monument & Fountain Maintenance	6
Equipment Maintenance & Repair	10
Pool Maintenance	14
Paint	16
Vehicle Maintenance	17
Pet Waste Disposal	18
Get In Touch With Us Online	19

COMMERCIAL TRASH ENCLOSURES

FOLLOW THESE **REQUIREMENTS** TO **KEEP OUR WATERWAYS CLEAN**

Trash enclosures, such as those found in commercial and apartment complexes, typically contain materials that are intended to find their way to a landfill or a recycling facility. These materials are NOT meant to go into our local lakes and rivers.

PROTECT WATER QUALITY BY FOLLOWING THESE SIMPLE STEPS

PUT TRASH INSIDE

Place trash inside the bin (preferably in sealed bags)

CLOSE THE LID

Prevent rain from entering the bin in order to avoid leakage of polluted water runoff

KEEP TOXICS OUT

- Grease, fats and used oils
- Batteries, electronics and fluorescent lights

SOME ADDITIONAL GUIDELINES, INCLUDE

SWEEP FREQUENTLY

Sweep trash enclosure areas frequently, instead of hosing them down, to prevent polluted water from flowing into the streets and storm drains.

FIX LEAKS

Address trash bin leaks immediately by using dry clean up methods and report to your waste hauler to receive a replacement.

✓ CONSTRUCT ROOF

Construct a solid cover roof over the existing trash enclosure structure to prevent rainwater from coming into contact with trash and garbage. Check with your local City/County for Building Codes.

In San Bernardino County, stormwater pollution is caused by food waste, landscape waste, chemicals and other debris that are washed into storm drains and end up in our waterways - untreated! You can be part of the solution by maintaining a water-friendly trash enclosure.

THANK YOU FOR HELPING TO KEEP SAN BERNARDINO COUNTY CLEAN AND HEALTHY!

In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

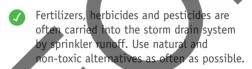
COMMERCIAL LANDSCAPE

DISCHARGE TO THE STORM DRAIN, **ACCIDENTAL OR NOT**, COULD LEAD TO ENFORCEMENT ACTIONS, WHICH COULD INCLUDE FINES.

Follow the best practices below to prevent water pollution from landscaping activities.

RECYCLE YARD WASTE

- Recycle leaves, grass clippings and other yard waste.
- Do not blow, sweep, rake or hose yard waste into the street or catch basin.


Try grasscycling: the natural recycling of grass by leaving clippings on the lawn when mowing.

For more information, please visit: www.calrecycle.ca.gov/organics /grasscycling

HOMEOWNERS

KEEP THESE TIPS IN MIND WHEN HIRING PROFESSIONAL LANDSCAPERS AND REMIND AS NECESSARY.

USE FERTILIZERS, HERBICIDES AND PESTICIDES SAFELY

If you must use chemical fertilizers, herbicides or pesticides:

• Spot apply, rather than blanketing entire areas.

• Avoid applying near curbs and driveways, and **never** before a rain.

• Apply fertilizers as needed: when plants could best use it and when the potential runoff would be low.

• Follow the manufacturer's instructions carefully—this will not only give the best results, but will save money.

Leftover pesticides, fertilizers, and herbicides contaminate landfills and should be disposed of through a Hazardous Waste Facility. For more information on proper disposal call,

(909) 382-5401 or 1-800-0ILY CAT.

*FREE for San Bernardino County residents only. Businesses can call for cost inquiries and to schedule an appointment

In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

USE WATER WISELY

- Control the amount of water and direction of sprinklers. Sprinklers should only be on long enough to allow water to soak into the ground, but not so long as to cause runoff.
- Periodically inspect, fix leaks and realign sprinkler heads.
- Plant native vegetation to reduce the need of water, fertilizers, herbicides and pesticides.

Pollutants on sidewalks and other pedestrian traffic areas and plazas are typically due to littering and vehicle use. Fountain water containing chlorine and copperbased algaecides is toxic to aquatic life. Proper inspection, cleaning, and repair of pedestrian areas and HOA owned surfaces and structures can reduce pollutant runoff from these areas. Maintaining these areas may involve one or more of the following activities:

- 1. Surface Cleaning
- 2. Graffiti Cleaning
- 3. Sidewalk Repair
- 4. Controlling Litter
- 5. Fountain Maintenance

POLLUTION PREVENTION:

Pollution prevention measures have been considered and incorporated in the model procedures. Implementation of these measures may be more effective and reduce or eliminate the need to implement other more complicated or costly procedures. Possible pollution prevention measures for sidewalk, plaza, and fountain maintenance and cleaning include:

- Use dry cleaning methods whenever practical for surface cleaning activities.
- Use the least toxic materials available (e.g. water based paints, gels or sprays for graffiti removal).
- Once per year, educate HOA staff and tenants on pollution prevention measures.

MODEL PROCEDURES:

1. Surface Cleaning

Discharges of wash water to the storm water drainage system from cleaning or hosing of impervious surfaces is prohibited. Sidewalks, Plazas

✓ Use dry methods (e.g. sweeping, backpack blowers, vacuuming) whenever practical to clean sidewalks and plazas rather than hosing, pressure washing, or steam cleaning. DO NOT sweep or blow material into curb; use devices that contain the materials.

6

✓ If water must be used, block storm drain inlets and contain runoff. Discharge wash water to landscaping or contain and dispose of properly.

In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

Parking Areas, Driveways, Drive-thru	 Parking facilities should be swept/vacuumed on a regular basis. Establish frequency of public parking lot sweeping based on usage and field observations of waste accumulation.
	✓ If water must be used, block storm drain inlets and contain runoff. Discharge wash water to landscaping or contain and dispose of properly.
	\checkmark Sweep all parking lots at least once before the onset of the wet season.
	✓ Use absorbents to pick up oil; then dry sweep.
	✓ Appropriately dispose of spilled materials and absorbents.
	OPTIONAL:
	 Consider increasing sweeping frequency based on factors such as traffic volume, land use, field observations of sediment and trash accumulation, proximity to water courses, etc.
Building Surfaces, Decks, etc., without loose paint	✓ Use high-pressure water, no soap.
etc., without loose paint	✓ If water must be used, block storm drain inlets and contain runoff. Discharge wash water to landscaping or contain and dispose of properly.
Unpainted Building Surfaces, Wood Decks, etc.	✓ If water must be used, block storm drain inlets and contain runoff. Discharge wash water to landscaping or contain and dispose of properly.
	✓ Use biodegradable cleaning agents to remove deposits.
	 Make sure pH is between 6.5 and 8.5 THEN discharge to landscaping (if cold water without a cleaning agent) otherwise dispose of properly.
2. Graffiti Cleaning	
Graffiti Removal	✓ Avoid graffiti abatement activities during rain events.
	✓ When graffiti is removed by painting over, implement the procedures under Painting and Paint Removal in the Roads, Streets, and Highway Operation and Maintenance procedure sheet.
	 Protect nearby storm drain inlets prior to removing graffiti from walls, signs, sidewalks, or other structures needing graffiti abatement. Clean up afterwards by sweeping or vacuuming thoroughly, and/or by using absorbent and properly disposing of the absorbent.

In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

7

✓ Note that care should be taken when disposing of waste since it may need to be disposed of as hazardous waste.

OPTIONAL:

- Consider using a waterless and non-toxic chemical cleaning method for graffiti removal (e.g. gels or spray compounds).
- 3. Sidewalk Repair

Surface Removal and Repair

- ✓ Schedule surface removal activities for dry weather if possible.
- ✓ Avoid creating excess dust when breaking asphalt or concrete.
- Take measures to protect nearby storm drain inlets prior to breaking up asphalt or concrete (e.g. place hay bales or sand bags around inlets). Clean afterwards by sweeping up material.
- ✓ Designate an area for clean up and proper disposal of excess materials.
- ✓ Remove and recycle as much of the broken pavement as possible.
- ✓ When making saw cuts in pavement, use as little water as possible. Cover each storm drain inlet with filter fabric during the sawing operation and contain the slurry by placing straw bales, sandbags, or gravel dams around the inlets. After the liquid drains shovel or vacuum the slurry, remove from site and dispose of properly.
- Always dry sweep first to clean up tracked dirt. Use a street sweeper or vacuum truck. Do not dump vacuumed liquid in storm drains. Once dry sweeping is complete, the area may be hosed down if needed. Discharge wash water to landscaping, pump to the sanitary sewer if permitted to do so or contain and dispose of properly.

Concrete Installation and Repair

- ✓ Avoid mixing excess amounts of fresh concrete or cement mortar on-site. Only mix what is needed for the job.
- ✓ Wash concrete trucks off-site or in designated areas on-site, such that there is no discharge of concrete wash water into storm drain inlets, open ditches, streets, or other storm water conveyance structures. (See Concrete Waste Management BMP WM – 8)

In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

~	Store dry and wet concrete materials under cover, protected from rainfall and runoff and away from drainage areas. After job is complete remove temporary stockpiles (asphalt materials, sand, etc.) and other materials as soon as possible.
~	Return leftover materials to the transit mixer. Dispose of small amounts of excess concrete, grout, and mortar in the trash.
~	When washing concrete to remove fine particles and expose the aggregate, contain the wash water for proper disposal.
~	Do not wash sweepings from exposed aggregate concrete into the street or storm drain. Collect and return sweepings to aggregate base stock pile, or dispose in the trash.
	Protect applications of fresh concrete from rainfall and runoff until the material has hardened.
. Litter Control √	Enforce anti-litter laws.
~	Provide litter receptacles in busy, high pedestrian traffic areas of the community, at recreational facilities, and at community events.
~	Cover litter receptacles and clean out frequently to prevent leaking/spillage or overflow.
C	OPTIONAL:
	Post "No Littering" signs.
. Fountain Maintenance	
	Do not use copper-based algaecides. Control algae with chlorine or other alternatives, such as sodium bromide.

✓ Allow chlorine to dissipate for a few days and then recycle/reuse water by draining it gradually onto a landscaped area. Water must be tested prior to discharge to ensure that chlorine is not present (concentration must be less than 0.1 ppm).

9

- ✓ Contact local agency for approval to drain into sewer or storm drain.
- ✓ Avoid mixing excess amounts of fresh concrete or cement mortar on-site. Only mix what is needed for the job.

4.

5.

In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

» For Residents

The following is a preview of the information we have available to residents. For more fact sheets, visit **sbcountystormwater.org**

Household Hazardous Waste Center Locations

TOO TOXIC TO TRASH

Dispose of your **HOUSEHOLD HAZARDOUS WASTE** (HHW) at a **FREE** HHW Center near you. Examples of items collected: pesticides, fertilizers, paints, cleaners, antifreeze, batteries, motor oil, oil filters, and electronic waste.

SERVICE AREA	LOCATION	DAYS OPEN	HOURS
Big Bear Lake (does not accept E- waste)	42040 Garstin Dr. (cross: Big Bear Blvd.)	Saturdays	9 a.m 2 p.m.
Chino	5050 Scheefer Ave. (cross: 4th St.)	2 nd & 4 th Sat.	8 a.m 1 p.m.
Fontana (Fontana residents only)	16454 Orange Way (cross: Cypress Ave.) Note: Provide a trash bill and a driver's license as proof of residency.	Saturdays	8 a.m 12 p.m.
Ontario	1430 S. Cucamonga Ave. (cross: Belmont St.)	Fri. & Sat.	9 a.m 2 p.m.
Rancho Cucamonga	8794 Lion Street. (Off 9th St, between Vineyard and Hellman)	Saturdays	8 a.m 12 p.m.
Redlands	500 Kansas St. (cross: Park Ave.)	Saturdays	9:30 a.m 12:30 p.m.
Rialto (does not accept E-waste)	246 Willow Ave. (cross: Rialto Ave.)	2 nd & 4 th Fri. & Sat.	8 a.m 12 p.m.
San Bernardino	2824 East 'W' St., 302 (cross: Victoria Ave.)	Mon. – Fri.	9 a.m 4 p.m.
Upland	1370 N. Benson Ave. (cross: 14th St.)	Saturdays	9 a.m 2 p.m.
······			

To report illegal dumping, call (877) WASTE18 or visit sbcountystormwater.org

Artwork Courtesy of the City of Los Angeles Stormwater Program. Printed on recycled paper.

VEHICLE MAINTENANCE

Oil, grease, anti-freeze and other toxic automotive fluids often make their way into the San Bernardino County storm drain system, and do not get treated before reaching the Santa Ana River. This pollutes our drinking water and contaminates waterways, making them unsafe for people and wildlife. Follow these best management practices to prevent pollution and protect public health.

Cleaning Auto Parts

Scrape parts with a wire brush or use a bake oven rather than liquid cleaners. Arrange drip pans, drying racks and drain boards so that fluids are directed back into the parts washer or the fluid holding tank. Do not wash parts or equipment in a sink, parking lot, driveway or street.

Storing Hazardous Waste

Keep your liquid waste segregated. Many fluids can be recycled via hazardous waste disposal companies if they are not mixed. Store all materials under cover with spill containment or inside to prevent contamination of rainwater runoff.

Preventing Leaks and Spills

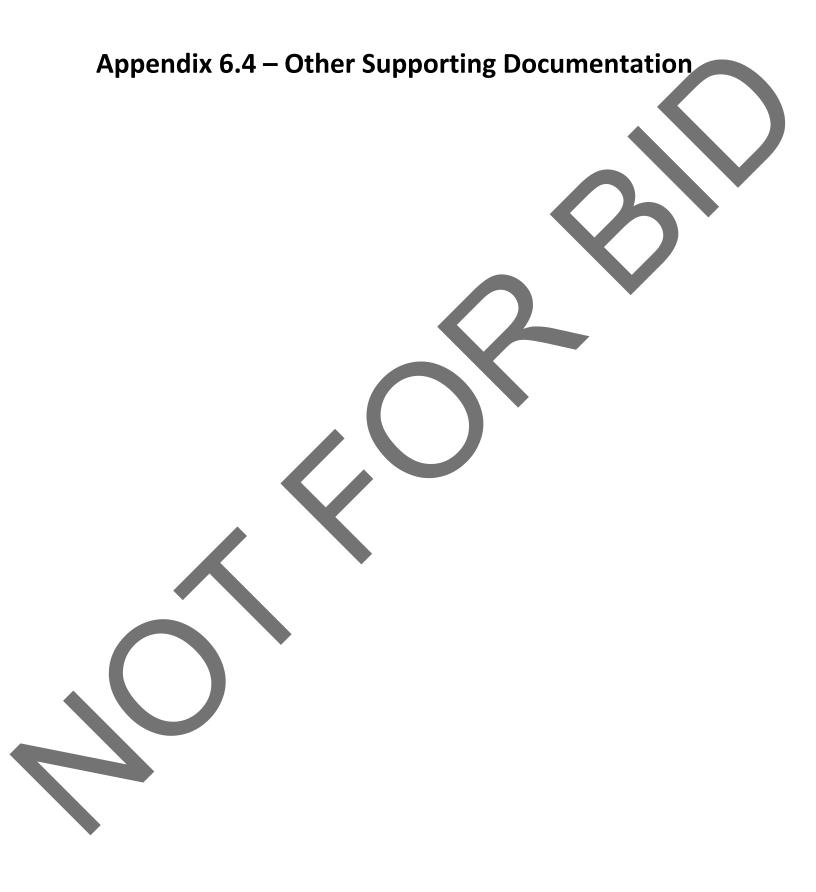
Conduct all vehicle maintenance inside of a garage. Place drip pans underneath vehicle to capture fluids. Use absorbent materials instead of water to clean work areas.

Cleaning Spills

Use dry methods for spill cleanup (sweeping, absorbent materials). To report accidental spills into the street or storm drain call (877) WASTE18 or 911.

Proper Disposal of Hazardous Waste

Dispose of household hazardous waste by taking it to your nearest household hazardous waste center. For more information, call 1-800-OILY CAT or check out sbcountystormwater.org/Disposal.html



In the event of a spill or discharge to a storm drain or waterway, contact San Bernadino County Stormwater immediately: (877) WASTE18 | sbcountystormwater.org/report

sbcountystormwater.org

Big Bear • Chino • Chino Hills • Colton • Fontana • Grand Terrace • Highland • Loma Linda • Montclair • Ontario • Rancho Cucamonga Redlands • Rialto • San Bernadino • San Bernadino County • San Bernadino County Flood Control District • Upland • Yucaipa

Area of Interest (AOI) Information

Area : 246,179.88 ft²

Aug 7 2023 15:42:44 Pacific Daylight Time

Maxar, Microsoft, Esir Community Maps Contributors, City of Pontania, County of Riverside, County of San Benardno, California State Parks, @ OpenStreetMap, Microsoft, Esiri, HERE, Garmin, SafeSraph, GeoTechnologies, Inc. METUNASA, USGS, Bureau of Land Management,

Project Site Parcel Numbers

#	ParcelNumber	Acreage	Area(ft²)
1	025216109	2.20	73,896.22
2	025216110	4.52	172,283.62

HCOC Exempt Area

#	Туре	Status	Area(ft²)	
1	HCOC Exempt Areas	Yes	246,179.84	

Drainage Segment Details

#	System Number	Facility Name	Closest channel segment's susceptibility to Hydromodification	Highest downstream hydromodification susceptibility	Is this drainage segment subject to TMDLs?
1	0-000-0	Mulberry Channel	ЕНМ	ЕНМ	No
2	2-122-6A	Marigold Storm Drain	ЕНМ	EHM	No
3	2-101-6B	East Fontana Storm Drain (Linden Ave. Storm Drain)	ЕНМ	High	No

	# Are there downstream drainage segments subject to TMDLs?	Is this drainage segme 303d listed stream		Are there 303d listed streams downstream?	Area(ft²)
1	No	No	N	No	689.27
2	2 No	No	N	No	7,488.86
3	8 No	No	Y	Yes	238,001.79

Onsite Soil Groups

#	ŧ	Onsite Soils Group	Soil Type	Soil Type Abbreviation	Area(ft ²)
1		Soils - Hydro Group A	TuB TUJUNGA LOAMY SAND, 0 TO 5 PERCENT SLOPES A	TUJUNGA LOAMY SAND	246,179.84

Ground Water Contour

#		GW_Contour	Length(ft)
1	-300		378.88

Studies and Reports Related to Project Site

about:blank

#	Report Link	Source	Date	Area(ft ²)
1	<u>SBVMWD_High_Groundwater_</u> /_Pressure_Zone_Area	USGS & San Bern Valley Municipal Water District	2005	246,179.84
2	Chino Basin Water Master 32 nd Annual Report	Chino Basin Watermaster	2008-2009	246,179.84
3	CSDP 3_CALC_SHEET_FOR_ HYDRO	San Bernardino County Flood Control District	April 1973	246,179.84
4	<u>CSDP_3-</u> <u>3_Rialto_Channel_Drainage_Ar</u> <u>ea_Volume_I</u>	James M. Montgomery	April 1988	246,179.84
5	CSDP_3- 3_Rialto_Channel_Drainage_Ar ea_Volume_II	James M. Montgomery	April 1988	246,179.84
6	CSDP_3- 3_Rialto_Channel_Drainage_Ar ea_Volume_III	James M. Montgomery	April 1988	246,179.84
7	CSDP_3- 3_Rialto_Channel_Drainage_Ar ea_Volume_I	James M. Montgomery	April 1988	246,179.84
3	CSDP_3- 3_Rialto_Channel_Drainage_Ar ea_Volume_IV	James M. Montgomery	April 1988	246,179.84
9	<u>CSDP_3-</u> <u>3_Rialto_Channel_Drainage_Ar</u> <u>ea_Volume_V</u>	James M. Montgomery	April 1988	246,179.84
10	Chino_Basin_Recharge_Master Plan	WE, Inc	August 2001	246,179.84
1	Rialto_MPD_Vol_II	Hall & Foreman, Inc	February 2009	246,179.84
12	RS-Rialto_Map_Book- FINAL_Layout2	Hall & Foreman, Inc	February 2009	246,179.84
13	<u>CSDP_3-</u> 3_Rialto_Channel_Drain_Area_ <u>Draft</u>	James M. Montgomery	January 1987	246,179.84
14	SBCounty_CSDP_Project_No.2 _Volume_1	Moffatt & Nichol	March 1969	246,179.84
15	SBCounty_CSDP_Project_No.2 Volume_2	Moffatt & Nichol	March 1969	246,179.84
16	Volume_2_Map	Moffatt & Nichol	March 1969	246,179.84
17	Project_Report_Mulberry_Cree <u>k</u>	San Bernardino County Flood Control District	May 1967	246,179.84
18	SBCounty_CSDP_Project_No.3 Volume_I	Verpet Engineering Company	May 1973	246,179.84
19	SBCounty_CSDP_Project_No.3 Volume_11	Verpet Engineering Company	May 1973	246,179.84
20	Cactus Basin	San Bernardino County Flood Control District	October 1985	246,179.84

Note: The information provided in this report and on the Stormwater Geodatabase for the County of San Bernardino Stormwater Program is intended to provide basic guidance in the preparation of the applicant's Water Quality Management Plan (WQMP) and should not be relied upon without independent verification. without independent verification.

NOAA Atlas 14, Volume 6, Version 2 Location name: Bloomington, California, USA* Latitude: 34.0694°, Longitude: -117.405° Elevation: 1109 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

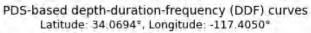
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

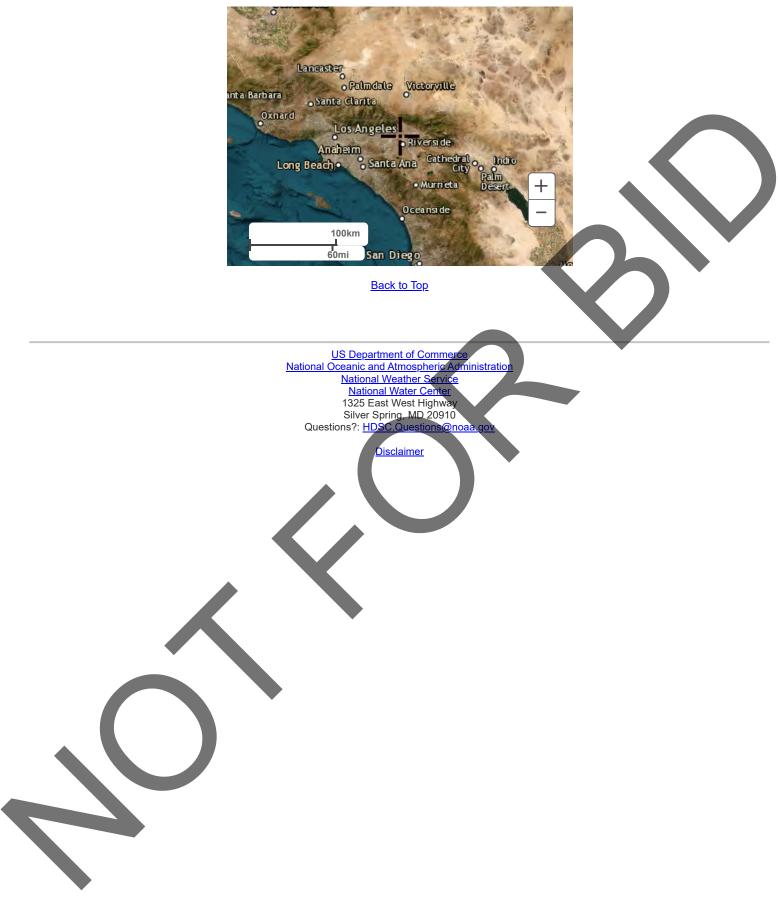
PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.110 (0.092-0.134)	0.143 (0.119-0.174)	0.188 (0.156-0.228)	0.225 (0.185-0.276)	0.276 (0.220-0.351)	0.318 (0.247-0.413)	0.361 (0.274-0.481)	0.407 (0.300-0.558)	0.472 (0.333-0.675)	0.525 (0.358-0.778)
10-min	0.158 (0.132-0.192)	0.206 (0.171-0.249)	0.269 (0.223-0.327)	0.322 (0.265-0.395)	0.396 (0.315-0.504)	0.455 (0.354-0.591)	0.517 (0.392-0.689)	0.583 (0.430-0.799)	0.676 (0.477-0.968)	0.752 (0.512-1.12)
15-min	0.192 (0.160-0.232)	0.249 (0.207-0.302)	0.325 (0.270-0.396)	0.389 (0.320-0.478)	0.479 (0.381-0.609)	0.551 (0.428-0.715)	0.625 (0.474-0.833)	0.705 (0.520-0.967)	0.818 (0.577-1.17)	0.910 (0.620-1.35)
30-min	0.286 (0.238-0.346)	0.371 (0.309-0.450)	0.485 (0.402-0.590)	0.581 (0.478-0.713)	0.715 (0.568-0.908)	0.822 (0.639-1.07)	0.933 (0.708-1.24)	1.05 (0.775-1.44)	1.22 (0.861-1.75)	1.36 (0.925-2.01)
60-min	0.418 (0.349-0.507)	0.543 (0.452-0.659)	0.710 (0.589-0.864)	0.850 (0.700-1.04)	1.05 (0.832-1.33)	1.20 (0.936-1.56)	1.37 (1.04-1.82)	1.54 (1.14-2.11)	1.79 (1.26-2.56)	1.99 (1.35-2.95)
2-hr	0.616 (0.513-0.747)	0.793 (0.660-0.962)	1.03 (0.852-1.25)	1.22 (1.00-1.50)	1.48 (1.18-1.88)	1.69 (1.31-2.20)	1.90 (1.44-2.53)	2.13 (1.57-2.92)	2.44 (1.72-3.49)	2.68 (1.83-3.98)
3-hr	0.772 (0.643-0.936)	0.991 (0.825-1.20)	1.28 (1.06-1.56)	1.51 (1.24-1.86)	1.83 (1.46-2.33)	2.08 (1.62-2.70)	2.33 (1.77-3.11)	2.60 (1.91-3.56)	2.96 (2.09-4.24)	3.25 (2.21-4.82)
6-hr	1.10 (0.914-1.33)	1.41 (1.17-1.71)	1.81 (1.50-2.21)	2.14 (1.76-2.63)	2.58 (2.05-3.28)	2.92 (2.27-3.78)	3.26 (2.47-4.34)	3.60 (2.66-4.94)	4.08 (2.88-5.84)	4.45 (3.03-6.60)
12-hr	1.46 (1.22-1.77)	1.89 (1.57-2.29)	2.43 (2.02-2.96)	2.87 (2.36-3.52)	3.45 (2.74-4.39)	3.89 (3.03-5.06)	4.33 (3.29-5.77)	4.78 (3.52-6.56)	5.39 (3.80-7.71)	5.85 (3.99-8.68)
24-hr	1.96 (1.73-2.26)	2.56 (2.26-2.95)	3.32 (2.93-3.84)	3.93 (3.44-4,59)	4.74 (4.02-5.71)	5.35 (4.44-6.58)	5.96 (4.82-7.50)	6.57 (5.18-8.51)	7.39 (5.59-9.97)	8.02 (5.86-11.2)
2-day	2.38 (2.10-2.74)	3.16 (2.80-3.65)	4.18 (3.68-4.83)	5.00 (4.37-5.82)	6.09 (5.16-7.34)	6.92 (5.74-8.51)	7.76 (6.28-9.78)	8.61 (6.79-11.2)	9.76 (7.39-13.2)	10.7 (7.79-14.9)
3-day	2.55 (2.26-2.94)	3.45 (3.05-3.98)	4.62 (4.07-5.34)	5.57 (4.87-6.50)	6.86 (5.81-8.27)	7.86 (6.52-9.67)	8.87 (7.19-11.2)	9.91 (7.81-12.8)	11.3 (8.57-15.3)	12.4 (9.10-17.3)
4-day	2.74 (2.42-3.15)	3.74 (3.31-4.32)	5.06 (4.46-5.85)	6.13 (5.36-7.15)	7.60 (6.44-9.16)	8.74 (7.25-10.8)	9.90 (8.02-12.5)	11.1 (8.76-14.4)	12.8 (9.65-17.2)	14.1 (10.3-19.6)
7-day	3.13 (2.77-3.60)	4.32 (3.82-4.99)	5.90 (5.20-6.83)	7.20 (6.30-8.39)	8.98 (7.60-10.8)	10.4 (8.60-12.7)	11.8 (9.55-14.9)	13.3 (10.5-17.2)	15.3 (11.6-20.7)	17.0 (12.4-23.7)
10-day	3.40 (3.01-3.91)	4.72 (4.18-5.45)	6.48 (5.72-7.50)	7.94 (6.94-9.26)	9.94 (8.42-12.0)	11.5 (9.55-14.2)	13.1 (10.6-16.5)	14.8 (11.7-19.2)	17.2 (13.0-23.2)	19.0 (13.9-26.6)
20-day	4.10 (3.63-4.72)	5.75 (5.09-6.64)	7.96 (7.02-9.22)	9.81 (8.58-11.4)	12.4 (10.5-14.9)	14.4 (12.0-17.7)	16.6 (13.4-20.9)	18.8 (14.8-24.4)	22.0 (16.6-29.7)	24.5 (18.0-34.2)
30-day	4.84 (4.29-5.58)	6.80 (6.01-7.85)	9.44 (8.32-10.9)	11.7 (10.2-13.6)	14.8 (12.5-17.8)	17.3 (14.3-21.2)	19.9 (16.1-25.1)	22.7 (17.9-29.4)	26.7 (20.2-36.0)	29.9 (21.9-41.7)
45-day	5.78 (5.12-6.66)	8.05 (7.12-9.29)	11.1 (9.82-12.9)	13.8 (12.0-16.0)	17.5 (14.8-21.0)	20.5 (17.0-25.2)	23.6 (19.1-29.8)	27.1 (21.3-35.0)	32.0 (24.2-43.1)	36.0 (26.3-50.2)
60-day	6.76 (5.99-7.80)	9.32 (8.24-10.8)	12.8 (11.3-14.8)	15.8 (13.8-18.4)	20.0 (17.0-24.2)	23.5 (19.5-28.9)	27.2 (22.0-34.2)	31.2 (24.6-40.4)	37.0 (28.0-49.9)	41.8 (30.6-58.3)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

NOAA Atlas 14, Volume 6, Version 2 Location name: Bloomington, California, USA* Latitude: 34.0694°, Longitude: -117.405° Elevation: 1109 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

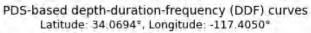
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

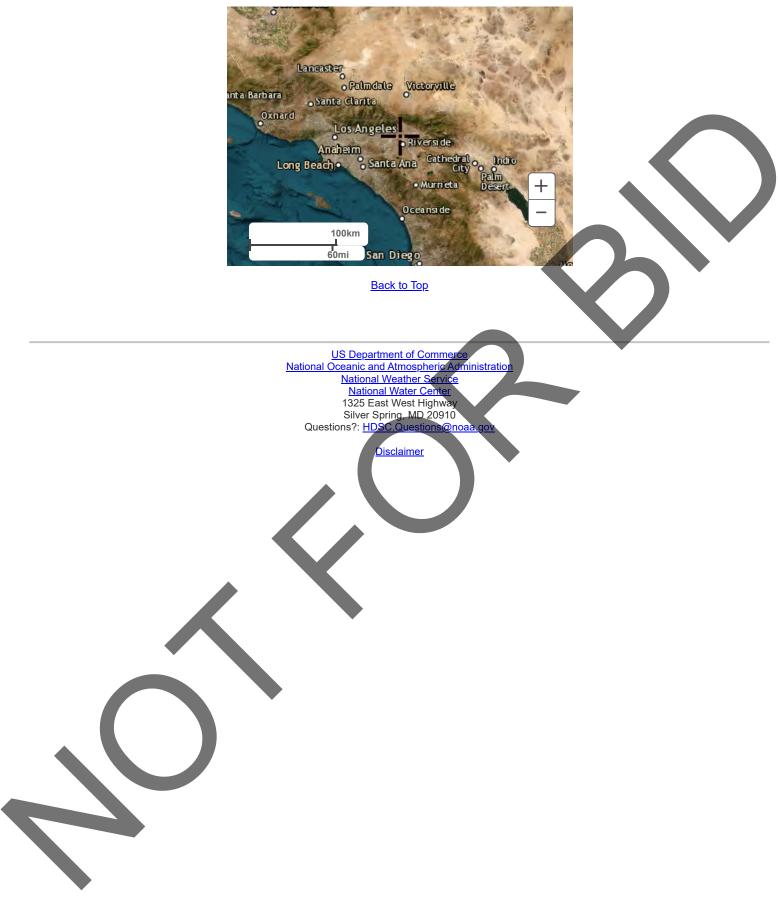
PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.110 (0.092-0.134)	0.143 (0.119-0.174)	0.188 (0.156-0.228)	0.225 (0.185-0.276)	0.276 (0.220-0.351)	0.318 (0.247-0.413)	0.361 (0.274-0.481)	0.407 (0.300-0.558)	0.472 (0.333-0.675)	0.525 (0.358-0.778)
10-min	0.158 (0.132-0.192)	0.206 (0.171-0.249)	0.269 (0.223-0.327)	0.322 (0.265-0.395)	0.396 (0.315-0.504)	0.455 (0.354-0.591)	0.517 (0.392-0.689)	0.583 (0.430-0.799)	0.676 (0.477-0.968)	0.752 (0.512-1.12)
15-min	0.192 (0.160-0.232)	0.249 (0.207-0.302)	0.325 (0.270-0.396)	0.389 (0.320-0.478)	0.479 (0.381-0.609)	0.551 (0.428-0.715)	0.625 (0.474-0.833)	0.705 (0.520-0.967)	0.818 (0.577-1.17)	0.910 (0.620-1.35)
30-min	0.286 (0.238-0.346)	0.371 (0.309-0.450)	0.485 (0.402-0.590)	0.581 (0.478-0.713)	0.715 (0.568-0.908)	0.822 (0.639-1.07)	0.933 (0.708-1.24)	1.05 (0.775-1.44)	1.22 (0.861-1.75)	1.36 (0.925-2.01)
60-min	0.418 (0.349-0.507)	0.543 (0.452-0.659)	0.710 (0.589-0.864)	0.850 (0.700-1.04)	1.05 (0.832-1.33)	1.20 (0.936-1.56)	1.37 (1.04-1.82)	1.54 (1.14-2.11)	1.79 (1.26-2.56)	1.99 (1.35-2.95)
2-hr	0.616 (0.513-0.747)	0.793 (0.660-0.962)	1.03 (0.852-1.25)	1.22 (1.00-1.50)	1.48 (1.18-1.88)	1.69 (1.31-2.20)	1.90 (1.44-2.53)	2.13 (1.57-2.92)	2.44 (1.72-3.49)	2.68 (1.83-3.98)
3-hr	0.772 (0.643-0.936)	0.991 (0.825-1.20)	1.28 (1.06-1.56)	1.51 (1.24-1.86)	1.83 (1.46-2.33)	2.08 (1.62-2.70)	2.33 (1.77-3.11)	2.60 (1.91-3.56)	2.96 (2.09-4.24)	3.25 (2.21-4.82)
6-hr	1.10 (0.914-1.33)	1.41 (1.17-1.71)	1.81 (1.50-2.21)	2.14 (1.76-2.63)	2.58 (2.05-3.28)	2.92 (2.27-3.78)	3.26 (2.47-4.34)	3.60 (2.66-4.94)	4.08 (2.88-5.84)	4.45 (3.03-6.60)
12-hr	1.46 (1.22-1.77)	1.89 (1.57-2.29)	2.43 (2.02-2.96)	2.87 (2.36-3.52)	3.45 (2.74-4.39)	3.89 (3.03-5.06)	4.33 (3.29-5.77)	4.78 (3.52-6.56)	5.39 (3.80-7.71)	5.85 (3.99-8.68)
24-hr	1.96 (1.73-2.26)	2.56 (2.26-2.95)	3.32 (2.93-3.84)	3.93 (3.44-4,59)	4.74 (4.02-5.71)	5.35 (4.44-6.58)	5.96 (4.82-7.50)	6.57 (5.18-8.51)	7.39 (5.59-9.97)	8.02 (5.86-11.2)
2-day	2.38 (2.10-2.74)	3.16 (2.80-3.65)	4.18 (3.68-4.83)	5.00 (4.37-5.82)	6.09 (5.16-7.34)	6.92 (5.74-8.51)	7.76 (6.28-9.78)	8.61 (6.79-11.2)	9.76 (7.39-13.2)	10.7 (7.79-14.9)
3-day	2.55 (2.26-2.94)	3.45 (3.05-3.98)	4.62 (4.07-5.34)	5.57 (4.87-6.50)	6.86 (5.81-8.27)	7.86 (6.52-9.67)	8.87 (7.19-11.2)	9.91 (7.81-12.8)	11.3 (8.57-15.3)	12.4 (9.10-17.3)
4-day	2.74 (2.42-3.15)	3.74 (3.31-4.32)	5.06 (4.46-5.85)	6.13 (5.36-7.15)	7.60 (6.44-9.16)	8.74 (7.25-10.8)	9.90 (8.02-12.5)	11.1 (8.76-14.4)	12.8 (9.65-17.2)	14.1 (10.3-19.6)
7-day	3.13 (2.77-3.60)	4.32 (3.82-4.99)	5.90 (5.20-6.83)	7.20 (6.30-8.39)	8.98 (7.60-10.8)	10.4 (8.60-12.7)	11.8 (9.55-14.9)	13.3 (10.5-17.2)	15.3 (11.6-20.7)	17.0 (12.4-23.7)
10-day	3.40 (3.01-3.91)	4.72 (4.18-5.45)	6.48 (5.72-7.50)	7.94 (6.94-9.26)	9.94 (8.42-12.0)	11.5 (9.55-14.2)	13.1 (10.6-16.5)	14.8 (11.7-19.2)	17.2 (13.0-23.2)	19.0 (13.9-26.6)
20-day	4.10 (3.63-4.72)	5.75 (5.09-6.64)	7.96 (7.02-9.22)	9.81 (8.58-11.4)	12.4 (10.5-14.9)	14.4 (12.0-17.7)	16.6 (13.4-20.9)	18.8 (14.8-24.4)	22.0 (16.6-29.7)	24.5 (18.0-34.2)
30-day	4.84 (4.29-5.58)	6.80 (6.01-7.85)	9.44 (8.32-10.9)	11.7 (10.2-13.6)	14.8 (12.5-17.8)	17.3 (14.3-21.2)	19.9 (16.1-25.1)	22.7 (17.9-29.4)	26.7 (20.2-36.0)	29.9 (21.9-41.7)
45-day	5.78 (5.12-6.66)	8.05 (7.12-9.29)	11.1 (9.82-12.9)	13.8 (12.0-16.0)	17.5 (14.8-21.0)	20.5 (17.0-25.2)	23.6 (19.1-29.8)	27.1 (21.3-35.0)	32.0 (24.2-43.1)	36.0 (26.3-50.2)
60-day	6.76 (5.99-7.80)	9.32 (8.24-10.8)	12.8 (11.3-14.8)	15.8 (13.8-18.4)	20.0 (17.0-24.2)	23.5 (19.5-28.9)	27.2 (22.0-34.2)	31.2 (24.6-40.4)	37.0 (28.0-49.9)	41.8 (30.6-58.3)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

GEOTECHNICAL INVESTIGATION AND WATER INFILTRATION TEST REPORT

BLOOMINGTON ANIMAL SHELTER 18313 Valley Boulevard Bloomington Area of San Bernardino County, California

CONVERSE PROJECT No. 22-81-206-01

Prepared For: MILLER ARCHITECTURAL CORPORATION 1177 Idaho Street, Suite 200

Redlands, CA 92374

Presented By: CONVERSE CONSULTANTS

2021 Rancho Drive, Suite 1 Redlands, CA 92373 909-796-0544

January 18, 2023

January 18, 2022

Mr. Gary Miller President/CEO Miller Architectural Corporation 1177 Idaho Street, Suite 200 Redlands, CA 92374

Subject: GEOTECHNICAL INVESTIGATION AND WATER INFILTRATION TEST REPORT Bloomington Animal Shelter

18313 Valley Boulevard Bloomington Area of San Bernardino County, California Converse Project No. 22-81-206-01

Dear Mr. Miller:

Converse Consultants (Converse) is pleased to submit this geotechnical investigation and water infiltration test report to assist with the design and construction of the Bloomington Animal Shelter project located at 18313 Valley Blvd. in the Bloomington Area, San Bernardino County, California. This report was prepared in accordance with our proposal dated June 16, 2022, your Acceptance of Agreement and Authorization to Proceed dated November 3, 2022.

Based upon our field investigation, laboratory data, and analyses, the project site is considered feasible from a geotechnical standpoint, provided the recommendations presented in this report are incorporated into the design and development of the project.

We appreciate the opportunity to be of service to Miller Architectural Corporation and San Bernardino County Real Estate Services, Department of Project Management. Should you have any questions, please do not hesitate to contact us at 909-474-2847.

CONVERSE CONSULTANTS

Hashmi S. E. Quazi, PhD, GE, PE Principal Engineer

Dist: 1-Electronic PDF/Addressee HSQ/SR/SM/kvg Geotechnical Investigation and Water Infiltration Test Report Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California January 18, 2023 Page ii

Mus

PROFESSIONAL CERTIFICATION

This report has been prepared by the individuals whose seals and signatures appear herein.

The findings, recommendations, specifications, or professional opinions contained in this report were prepared in accordance with generally accepted professional engineering, engineering geologic principles, and practice in this area of Southern California. There is no warranty, either expressed or implied.

your Rahman

SK Syfur Rahman, PhD, EIT Sr. Staff Engineer

Stephen McPherson Staff Geologist

06/2023

Hashmi S. E. Quazi, PhD, PE, GE Principal Engineer Geotechnical Investigation and Water Infiltration Test Report Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California January 18, 2023 Page iii

TABLE OF CONTENTS

1.0		1
2.0	PROJECT DESCRIPTION	1
3.0	SITE DESCRIPTION	2
4.0	SCOPE OF WORK	
	 4.1 Project Set-up 4.2 Subsurface Exploration 4.3 Laboratory Testing 4.4 Analysis and Report Preparation 	
5.0	SUBSURFACE CONDITIONS	5
	 5.1 Subsurface Profile	6 7 7 8 8
6.0	ENGINEERING GEOLOGY	
	6.1 Regional Geology6.2 Local Geology6.3 Flooding	9
7.0	FAULTING AND SEISMICITY	10
	 7.1 Faulting 7.2 CBC Seismic Design Parameters 7.3 Secondary Effects of Seismic Activity 	11
8.0	LABORATORY TEST RESULTS	14
	8.1 Physical Testing8.2 Chemical Testing - Corrosivity Evaluation	14 15
9.0	PERCOLATION TESTING	15
10.0	EARTHWORK RECOMMENDATIONS	15
	10.1General10.2Remedial Grading10.3Engineered Fill10.4Compacted Fill Placement10.5Shrinkage and Subsidence	
	10.6 Site Drainage	

M:\JOBFILE\2022\81\22-81-206 Miller Architects, Bloomington Animal Shelter \Report\22-81-206_GIR(01)parks

11.0	0 UTILITY TRENCH BACKFILL1				
	11.1 11.2 11.3	Pipe Sub-grade Preparation Pipe Bedding Trench Zone Backfill			
12.0	DESI	GN RECOMMENDATIONS	.21		
	12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	Slabs-on-Grade Soil Parameters for Pipe Design Settlement. Soil Corrosivity. Flexible Pavement Recommendations. Rigid Pavement Recommendations. Concrete Flatwork.	. 24 . 25 . 26 . 27 . 28		
13.0	CONS	STRUCTION RECOMMENDATIONS	. 28		
	13.1 13.2	General Temporary Sloped Excavations			
14.0	GEOT	FECHNICAL SERVICES DURING CONSTRUCTION	. 29		
15.0	CLOSURE				
16.0	REFERENCES				

FIGURES

Following Page

TABLES

Page No.

Table No. 1, Summary of Borings	4
Table No. 2, Summary of USGS Groundwater Depth Data	6
Table No. 3, Collapse Potential Values	8
Table No. 4, Summary of Regional Faults	10
Table No. 5, CBC Seismic Design Parameters	12
Table No. 6, Summary of Corrosivity Test Results	15
Table No. 7, Estimated Infiltration Rates	15
Table No. 8, Overexcavation Depths	16
Table No. 9, Recommended Foundation Parameters	22
Table No. 10, Active and At-Rest Earth Pressures	22
Table No. 11, Soil Parameters for Pipe Design	24
Table No. 12, Correlation Between Resistivity and Corrosion	

M:\JOBFILE\2022\81\22-81-206 Miller Architects, Bloomington Animal Shelter \Report\22-81-206_GIR(01)parks

Geotechnical Investigation and Water Infiltration Test Report Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California January 18, 2023 Page v

Table No. 13, Recommended Preliminary Flexible Pavement Sections 26	
Table No. 14, Recommended Preliminary Rigid Pavement Sections	
Table No. 15, Slope Ratios for Temporary Excavations 29	

APPENDICES

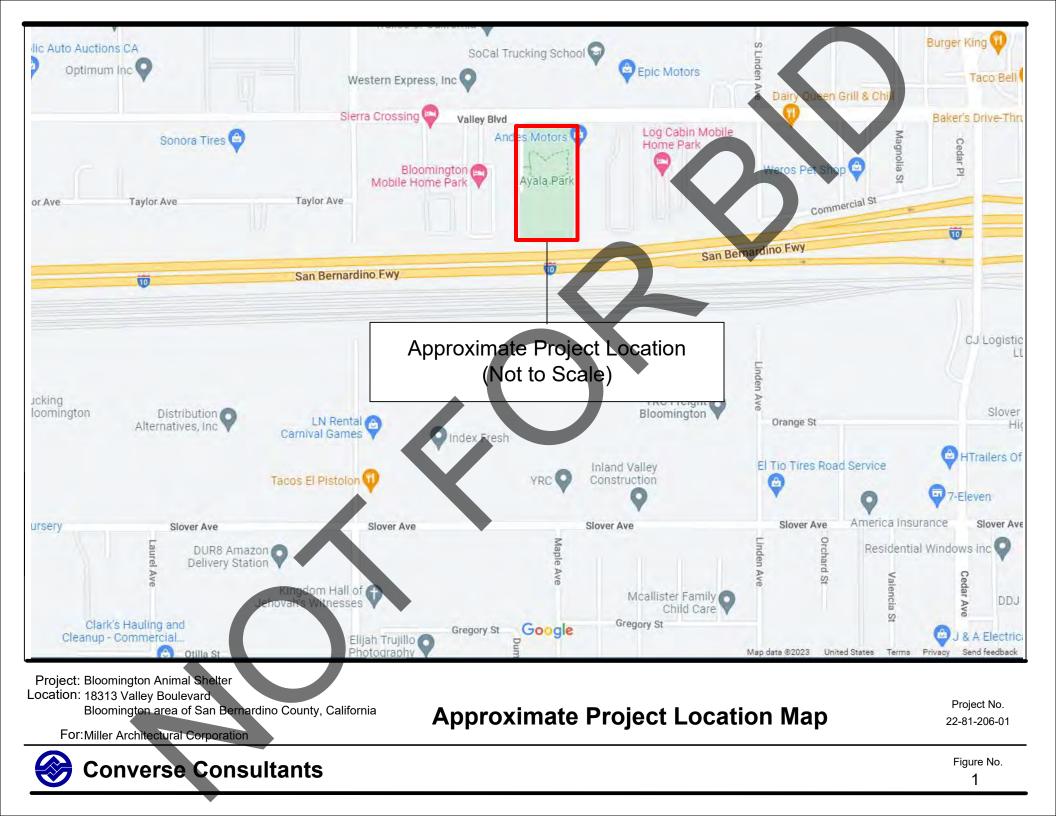
Appendix A	Field Exploration
Appendix B	Laboratory Testing Program
Appendix C	Liquefaction and Settlement Analysis
Appendix D	Percolation Testing

1.0 INTRODUCTION

This report contains the findings of the geotechnical investigation performed by Converse to assist with the design and construction of the Bloomington Animal Shelter located at 18313 Valley Boulevard Bloomington Area of San Bernardino County, California. The approximate location of the project is shown in Figure No. 1, *Approximate Project Location Map.*

The purposes of this investigation were to evaluate the nature and engineering properties of the subsurface soils and groundwater conditions, and to provide geotechnical recommendations for the design and construction of the proposed project.

This report was prepared for the project described herein and is intended for use solely by Miller Architectural Corporation, San Bernardino County Real Estate Services-Project Management, and their authorized agents. This report may be made available to the prospective bidders for bidding purposes. However, the bidders are responsible for their own interpretation of the site conditions between and beyond the boring locations, based on factual data contained in this report. This report may not contain sufficient information for use by others and/or other purposes.


2.0 PROJECT DESCRIPTION

According to the information provided by Miller Architectural Corporation, the Bloomington Animal Shelter project will consist of the following.

- 16,000 square feet building which will include the following
 - Animal housing
 - o Administration
- Veterinary care building
- Animal intake
- Quarantine and isolation building/private area
- Barn
- Storage building
- 3 stall garages
- Power generator building
- Euthanasia building
- 10-foot-high x 8" thick CMU wall along the Interstate freeway 10 (I-10).
- 8-foot-high x 8" thick CMU wall along the east and west property lines.
- Outdoor community events for school group, tours, and presentations
- Trash disposal
- Segregated and covered parking

We have assumed that there will also be one water infiltration device installed within the project area. Also, associated with the above-mentioned development, there will be

interior streets, concrete walkways, underground utilities, and landscaping. Based on the shallow relief on the site, it is anticipated that grading will consist of cuts and fills of up to about 5 feet or less.

3.0 SITE DESCRIPTION

The approximately 6-acre, 330' x 800' site is located in the unincorporated community of Bloomington in the San Bernardino Valley, surrounded by the cities of Rialto and Fontana in San Bernardino County, and Jurupa Valley in Riverside County. The site is bounded to the north by Valley Boulevard, to the west by residential properties, to the east by a used car lot and vacant lot and to the south by Interstate Freeway 10 (I-10).

A review of Google Maps indicates that Ayala Park was previously situated within the footprint of the proposed animal shelter location. Ayala Park had three to four enclosed structures, two gazebos, parking areas with associated access roads, a basketball court, children's play area, paved walkways, approximately fifty trees and grass covered parkland. At the time of the field investigation, all of the structures, paved areas, trees, and grassland had been removed with the exception of a utility box and the soil had been disced in preparation for the construction of the proposed Bloomington Animal shelter.

The subject site terrain is almost flat, gently slopes southward toward concrete storm drain channel along I-10. The site is presently fenced off and vacant. Photograph Nos. 1 and 2 depict the present site conditions.

Photograph No. 1, Present site conditions facing northeast from the eastern edge of the infiltration basin.

Photograph No. 2, Present site conditions facing north from the proposed cats building

4.0 SCOPE OF WORK

The scope of Converse's investigation is described in the following sections.

4.1 Project Set-up

We reviewed the following documents.

- Plans and documents for construction.
- Previous geologic/geotechnical publications of the site and surrounding area.
- Faulting and seismic hazard maps.
- Groundwater data.
- Aerial photographs.

As part of the project set-up, our staff performed the following.

- Prepared a geotechnical exploration plan and submitted it to Mr. Brent Adams with Miller Architectural Corporation for approval.
- Coordinated with Mr. Brent Adams for site access.
- Conducted a site reconnaissance and staked/marked the field exploration locations such that is available.
- Notified Underground Service Alert (USA) at least 48 hours prior to drilling to clear the boring locations of any conflict with existing underground utilities.
- Engaged a California-licensed driller to drill exploratory borings.

4.2 Subsurface Exploration

Eight borings (BH-01 through BH-08) were drilled on December 8, 2022, to investigate the subsurface conditions using a truck mounted drill rig equipped with an 8-inch diameter hollow stem auger for soil sampling. The borings were drilled to depths ranging between 5.0 and 50.0 feet below ground surface (bgs). Two test holes (PT-01 and PT-02) were drilled on December 8, 2023, to depths of 5.3 and 10.2 bgs, respectively to perform percolation testing. The boreholes were fit with perforated pipe for percolation testing that was performed on December 9, 2022.

The purpose of the borings was to:

- Estimate the extent and depths of remedial grading.
- Classify the soils within the borings.
- Collect soils samples for laboratory testing.
- Determine the excavatability of the soil.
- Preform percolation testing in two of the borings at depths of 5.3 and 10.2 feet bgs.

Details of these borings are presented in Table No. 1, Summary of Borings.

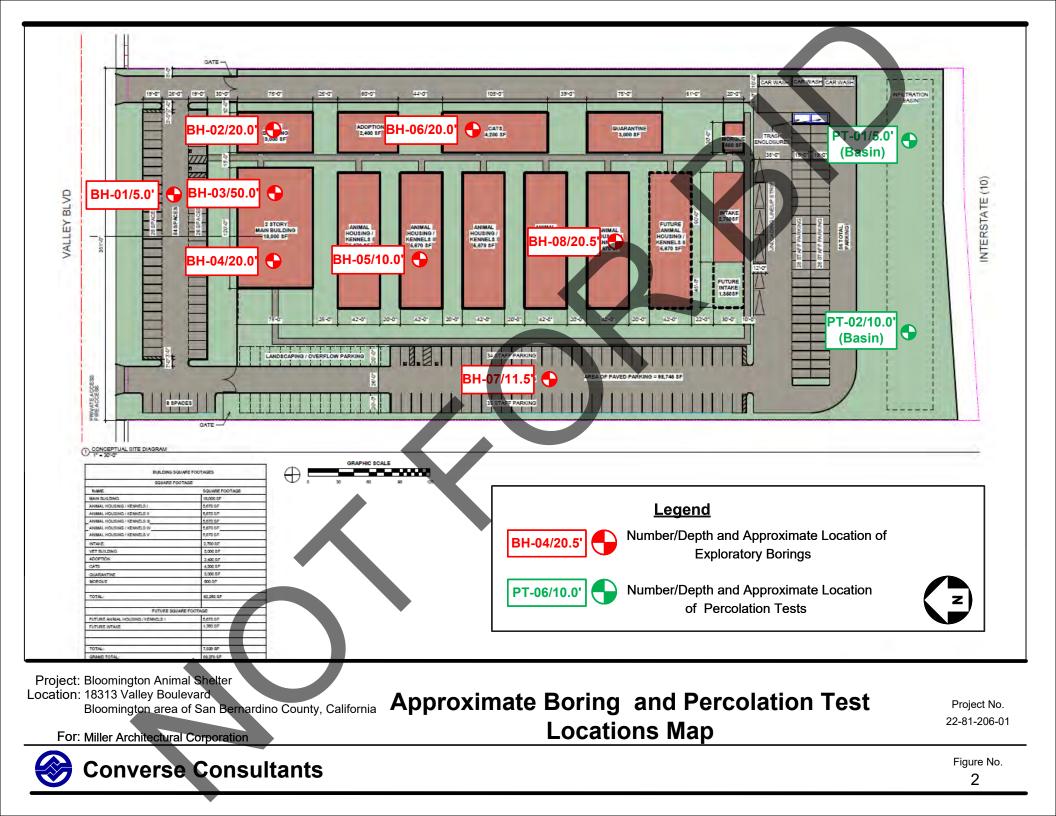

Boring	Boring Dept	h (ft, bgs)	Groundwater Depth	Date Completed	
No.	Proposed	Completed	(ft, bgs)		
BH-01	5.0	5.0	N/E	12/8/2022	
BH-02	20.0	20.0	N/E	12/8/2022	
BH-03	50.0	50.0	N/E	12/8/2022	
BH-04	20.0	20.0	N/E	12/8/2022	
BH-05	10.0	10.0	N/E	12/8/2022	
BH-06	20.0	20.0	N/E	12/8/2022	
BH-07	10.0	11.5	N/E	12/8/2022	
BH-08	20.0	20.5	N/E	12/8/2022	
PT-01	5.0	5.3	N/E	12/8/2022	
PT-02	10.0	10.2	N/E	12/8/2022	
Note: N/E = Not Encountered					

Table No. 1, Summary of Borings

For location of the borings, see Figure No. 2, Approximate Boring Locations Map.

The approximate locations of the borings are shown on Figure No. 2, *Approximate Boring and Percolation Test Locations Map.* A detailed discussion of subsurface exploration is presented in Appendix A, *Field Exploration*.

4.3 Laboratory Testing

Representative samples of the site soils were tested in the laboratory to aid in soil classification, and to evaluate relevant engineering properties. These tests included the following.

- In-situ moisture contents and dry densities (ASTM D2216 and D2937)
- R-value (California Test 301)
- Soil corrosivity (California Test Methods 643, 422, and 417)
- Collapse potential (ASTM D4546)
- Grain size analysis (ASTM D6913)
- Maximum dry density and optimum-moisture content (ASTM D1557)
- Direct shear (ASTM D3080)
- Consolidation (ASTM D2435)

For *in-situ* moisture and dry density data, see the logs of borings in Appendix A, *Field Exploration*. For a description of the laboratory test methods and test results, see Appendix B, *Laboratory Testing Program*.

4.4 Analysis and Report Preparation

Data obtained from the field exploration and laboratory testing program was assembled and evaluated. Geotechnical analyses of the compiled data were performed, followed by the preparation of this report to present our findings, conclusions, and recommendations for the proposed project.

5.0 SUBSURFACE CONDITIONS

A general description of the subsurface conditions, various materials and groundwater conditions encountered at the site during our field exploration is discussed below.

5.1 Subsurface Profile

Based on the exploratory borings and laboratory test results, the subsurface materials at the site primarily consist of a mixture of sand, silt, gravel and cobbles. Few to some gravels up to 3 inches in maximum dimension and cobbles up to 6 inches in maximum dimension were observed in the borings.

Discernible fill soils were not identified in our subsurface exploration; however, the site may have been previously graded for the former Ayala Park and fill soil is likely present. If present, the fill soils were likely derived from on-site sources and are similar to the native alluvial soils in composition and density.

For a detailed description of the subsurface materials encountered in the exploratory borings, see Drawings No. A-2 through A-11, *Logs of Borings,* in Appendix A, *Field Exploration.*

5.2 Groundwater

Groundwater was not encountered during the field investigation up to a depth of 50.0 feet bgs.

The GeoTracker database (SWRCB, 2022) was reviewed for groundwater data from sites within an approximately 1.0-mile radius of the proposed development. Results of that search are as follows.

- Merit Oil (Site No. # T0607100201), located approximately 5,200 feet northeast of the project site reported groundwater at a depth of 350 feet bgs in 2001.
- SBCFD Central Valley #76 (Site No. # T0607100439), located approximately 2,300 feet east of the project site reported groundwater depths ranging from 200 to 300 feet bgs in 1997.

The National Water Information System (USGS, 2022) was reviewed for current and historical groundwater data from sites within an approximately 1.0-mile radius of the proposed development and the results of that search are included below.

Table No. 2, Summary of USGS Groundwater Depth Data

Site Number	Location	Groundwater Depth Range (ft. bgs)	Date Range
340402117234601	Cedar Place south of railroad tracks; approximately 2,700 feet east of project site	240.0-288.0	1956-2001
340402117234501	Cedar Place south of railroad tracks; approximately 2,800 feet east of project site	250.0-260.81	2001-2008

The California Department of Water Resources database (DWR, 2022) was reviewed for historical groundwater data from sites within a 1.0-mile radius of the project site. One site was identified within a 1.0-mile radius of the project site that contained groundwater elevation data. Details of that record are listed below.

- Well Name Chino 1006993 (Station 340672N1173970W001), located approximately 2,800 feet east of the project site, reported groundwater at a depth ranging from 101.00 to 335.00 feet bgs in 1993.
- Well Number 01S05W22M003S (Station 340672N1173967W001), located approximately 2,800 feet east of the project site, reported groundwater at a depth ranging from 127.21 to 260.81 feet bgs between 2005 and 2008.

Based on available data, the historical high groundwater level reported at wells within approximately one mile of the site was approximately 101.00 feet bgs. Current groundwater is expected to be deeper than 101.00 feet bgs. Groundwater is not expected to be encountered during excavation or construction. It should be noted that the groundwater level could vary depending upon the seasonal precipitation and possible groundwater pumping activity in the site vicinity. Shallow perched groundwater may be present locally, particularly following precipitation.

5.3 Expansive Soils

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) due to variations in moisture content. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade. Depending on the extent and location below finish subgrade, expansive soils can have a detrimental effect on structures.

Based on the laboratory test results, the expansion indices of the upper 5 feet soils were 0, corresponding to very low expansion potentials.

5.4 Collapse Potential

Soil deposits subjected to collapse/hydro-consolidation generally exist in regions of moisture deficiency. Collapsible soils are generally defined as soils that have potential to suddenly decrease in volume upon an increase in moisture content even without an increase in external loads. Moreover, some soils may have a different degree of collapse/hydro-consolidation based on the amount of proposed fill or structure loads. Soils susceptible to collapse/hydro-consolidation include wind-blown silt, weakly cemented sand, and silt where the cementing agent is soluble (e.g., soluble gypsum, halite), alluvial or colluvial deposits within semi-arid to arid climate, and certain weathered bedrock above the groundwater table.

Granular soils may have a potential to collapse upon wetting in arid climate regions. Collapse/hydro-consolidation may occur when the soluble cements (carbonates) in the soil matrix dissolve, causing the soil to densify from its loose/low density configuration from deposition.

The degree of collapse of a soil can be defined by the collapse potential value, which is expressed as a percent of collapse of the total sample using the Collapse Potential Test (ASTM D4546). According to the ASTM guideline, the severity of collapse potential is commonly evaluated by the following Table No. 3, *Collapse Potential Values*.

Collapse Potential Value (%)	Severity of Problem
0	None
0.1 to 2	Slight
2.1 to 6.0	Moderate
6.0 to 10.0	Moderately Severe
>10	Severe

Table No. 3, Collapse Potential Values

Based on the laboratory test results (collapse potential of 0.6 and 1.5 percent), slight collapse potential is anticipated at the site. Collapse potential distress is typically considered a concern when collapse potential is over 2% (LA County, 2013).

5.5 Excavatability

The subsurface materials at the project are expected to be excavatable by conventional heavy-duty earth moving equipment. However, Excavation will be difficult if high concentration of gravel or cobbles are encountered within the excavation depth.

The phrase "conventional heavy-duty excavation equipment" is intended to include commonly used equipment such as excavators, scrapers, and trenching machines. It does not include hydraulic hammers ("breakers"), jackhammers, blasting, or other specialized equipment and techniques used to excavate hard earth materials. Selection of an appropriate excavation equipment models should be done by an experienced earthwork contractor.

5.6 Subsurface Variations

Based on results of the subsurface exploration and our experience, some variations in the continuity and nature of subsurface soil conditions within the project site should be anticipated. Because of the uncertainties involved in the nature and depositional characteristics of the earth material, care should be exercised in interpolating or extrapolating subsurface conditions between or beyond the boring locations.

6.0 ENGINEERING GEOLOGY

The regional and local geology within the proposed project area is discussed below.

6.1 Regional Geology

The project site lies within the northernmost portion of the Peninsular Ranges Geomorphic Province of California, near the boundary with the Transverse Ranges Province. The Peninsular Ranges Province is characterized by northwest trending

valleys and mountain ranges, which have formed in response to the regional tectonic forces along the boundary between the Pacific and North American tectonic plates. The geologic structure is dominated by northwest trending right-lateral faults, most notably, the San Andreas Fault System. The Peninsular Ranges Geomorphic Province consists of a series of northwest-trending mountain ranges and valleys bounded on the north by the San Bernardino and San Gabriel Mountains, on the west by the Los Angeles Basin, and on the southwest by the Pacific Ocean and extends southward from the Transverse Ranges into the Baja California Peninsula.

The province is a seismically active region characterized by a series of northwesttrending strike-slip faults. The most prominent of the nearby fault zones include the San Jacinto and Elsinore faults, as well as the San Gorgonio and San Andreas fault zones (CGS, 2007), all of which have been known to be active during Quaternary time.

Topography within the province is generally characterized by broad alluvial valleys separated by linear mountain ranges. This northwest-trending linear fabric is created by the regional faulting within the granitic basement rock of the Southern California Batholith. Broad, linear, alluvial valleys have been formed by erosion of these principally granitic mountain ranges.

The project site is located at the extreme northeast margin of a structural block within the Peninsular Ranges known as the Perris Block. The Perris Block is a relatively stable structural block bounded by the San Jacinto fault and Ellsinore fault. The northern boundary is formed by the east-west compressional faults associated with the Transverse Ranges Physiographic Province. The southern boundary is less clearly defined.

The project site is located in an active seismic area. The active Cucamonga, San Jacinto, and San Andreas faults are located nearby. A detailed discussion on site-specific faulting and seismicity is presented in Section 7.0, Faulting and Seismicity.

6.2 Local Geology

The project site is underlain by late Holocene aged young alluvial-fan deposits (Qyf_5), consisting of unconsolidated to slightly consolidated coarse-grained sand having slightly dissected to undissected surfaces to alluvial deposited boulders (Morton and Miller, 2006).

6.3 Flooding

Review of National Flood Insurance Rate Maps indicates that the project site is within a Flood Hazard Zone "X". The Zone "X" is designated as an "Area of Minimal Flood Hazard" (FEMA, 2008).

7.0 FAULTING AND SEISMICITY

The approximate distance and seismic characteristics of nearby faults as well as seismic design coefficients are presented in the following subsections.

7.1 Faulting

The proposed site is situated in a seismically active region. As is the case for most areas of Southern California, ground-shaking resulting from earthquakes associated with nearby and more distant faults may occur at the project site. During the life of the project, seismic activity associated with active faults can be expected to generate moderate to strong ground shaking at the site. Review of recent seismological and geophysical publications indicates that the seismic hazard for the project is high.

The project site is not located within a currently mapped State of California Earthquake Fault Zone for surface fault rupture (CGS, 2007; Riverside County, 2022). Table No. 4, *Summary of Regional Faults,* summarizes selected data of known faults capable of seismic activity within 100 kilometers of the site based on the generalized coordinates (34.0694N, 117.4053W). The data presented below was calculated using the National Seismic Hazard Maps Database (USGS, 2008) and other published geologic data.

Fault Name and Section	Closest Distance (km)	Slip Sense	Length (km)	Slip Rate (mm/year)	Maximum Magnitude
San Jacinto	8.13	strike slip	241	n/a	7.88
Cucamonga	12.42	thrust	28	5.0	6.70
S. San Andreas	16.15	strike slip	548	n/a	8.18
Cleghorn	24.06	strike slip	25	3.0	6.80
San Jose	26.81	strike slip	20	0.5	6.70
Chino, alt 1	28.8	strike slip	24	1.0	6.70
Chino, alt 2	28.87	strike slip	29	1.0	6.80
North Frontal (West)	30.18	reverse	50	1.0	7.20
Elsinore	31.39	strike slip	241	n/a	7.85
Sierra Madre	31.53	reverse	57	2.0	7.20
Sierra Madre Connected	31.53	reverse	76	2.0	7.30
Clamshell-Sawpit	44.88	reverse	16	0.5	6.70
Puente Hills (Coyote Hills)	46.81	thrust	17	0.7	6.90
Raymond	55.01	strike slip	22	1.5	6.80
San Joaquin Hills	55.99	thrust	27	0.5	7.10
Puente Hills (Santa Fe Springs)	58.7	thrust	11	0.7	6.70

Table No. 4, Summary of Regional Faults

Fault Name and Section	Closest Distance (km)	Slip Sense	Length (km)	Slip Rate (mm/year)	Maximum Magnitude	
Helendale-So Lockhart	59.08	strike slip	114	0.6	7.40	
North Frontal (East)	63.14	thrust	27	0.5	7.00	
Pinto Mtn	63.18	strike slip	74	2.5	7.30	
Elysian Park (Upper)	64.18	reverse	20	1.3	6.70	
Puente Hills (LA)	67.57	thrust	22	0.7	7.00	
Verdugo	69.46	reverse	29	0.5	6.90	
Newport Inglewood Connected alt 2	69.76	strike slip	208	1.3	7.50	
Newport-Inglewood, alt 1	69.88	strike slip	65	1.0	7.20	
Newport Inglewood Connected alt 1	69.88	strike slip	208	1.3	7.50	
Newport-Inglewood (Offshore)	71.01	strike slip	66	1.5	7.00	
Hollywood	76.39	strike slip	17	1.0	6.70	
Lenwood-Lockhart-Old Woman Springs	76.77	strike slip	145	0.9	7.50	
Santa Monica Connected alt 2	81.29	strike slip	93	2.4	7.40	
Johnson Valley (No)	83.52	strike slip	35	0.6	6.90	
San Gabriel	85.28	strike slip	71	1.0	7.30	
Sierra Madre (San Fernando)	85.32	thrust	18	2.0	6.70	
Palos Verdes Connected	86.31	strike slip	285	3.0	7.70	
Palos Verdes	86.31	strike slip	99	3.0	7.30	
Landers	90.36	strike slip	95	0.6	7.40	
Burnt Mtn	91.56	strike slip	21	0.6	6.80	
Santa Monica, alt 1	92.97	strike slip	14	1.0	6.60	
Santa Monica Connected alt 1	92.97	strike slip	79	2.6	7.30	
Eureka Peak	93.39	strike slip	19	0.6	6.70	
Northridge	93.61	thrust	33	1.5	6.90	
So Emerson-Copper Mtn	94.56	strike slip	54	0.6	7.10	
Gravel Hills-Harper Lk	99.57	strike slip	65	0.7	7.10	
Coronado Bank (Source: https://earthquake.usgs.gov	99.63	strike slip	186	3.0	7.40	

(Source: https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/)

7.2 CBC Seismic Design Parameters

Seismic parameters based on the 2022 California Building Code (CBC, 2022) and ASCE 7-16 are provided in the following table. These parameters were determined

using the generalized coordinates (34.0694N, 117.4053W) and the Seismic Design Maps ATC online tool.

Seismic Parameters	
Site Coordinates	34.0694N, 117.4053W
Site Class	D
Risk Category	
Mapped Short period (0.2-sec) Spectral Response Acceleration, $S_{\rm s}$	1.560g
Mapped 1-second Spectral Response Acceleration, S ₁	0.604g
Site Coefficient (from Table 1613.5.3(1)), F _a	1.0
Site Coefficient (from Table 1613.5.3(2)), Fv	1.7
MCE 0.2-sec period Spectral Response Acceleration, S _{MS}	1.560g
MCE 1-second period Spectral Response Acceleration, SM1	1.027g
Design Spectral Response Acceleration for short period S _{DS}	1.040g
Design Spectral Response Acceleration for 1-second period, S_{D1}	0.685g
Maximum Peak Ground Acceleration, PGA _M	0.727g

7.3 Secondary Effects of Seismic Activity

In addition to ground shaking, effects of seismic activity on a project site may include surface fault rupture, soil liquefaction, landslides, lateral spreading, seismic settlement, tsunamis, seiches and earthquake-induced flooding. Results of a site-specific evaluation of each of the above secondary effects are explained below.

Surface Fault Rupture: The project site is not located within a currently designated State of California or San Bernardino County Hazard Map fault zone (CGS, 2007; San Bernardino County, 2019b). Based on review of existing geologic information, no major surface fault crosses through or extends toward the site. The potential for surface rupture resulting from the movement of active faults near the site is not known with certainty but is considered very low.

Liquefaction: Liquefaction is defined as the phenomenon in a soil mass, because of the development of excess pore pressures, soil mass suffers a substantial reduction in its shear strength. During earthquakes, excess pore pressures in saturated soil deposits may develop as a result of induced cyclic shear stresses, resulting in liquefaction. Soil liquefaction occurs in submerged granular soils during or after strong ground shaking. There are several requirements for liquefaction to occur. They are as follows.

- Soils must be submerged.
- Soils must be primarily granular.
- Soils must be contractive, that is, loose to medium-dense.
- Ground motion must be intense.
- Duration of shaking must be sufficient for the soils to lose shear resistance.

The project site is not located within a currently designated area susceptible to liquefaction (San Bernardino County, 2019b). The potential for liquefaction of the site is expected to be very low. Based on a site-specific settlement analysis presented in Appendix C, *Liquefaction and Settlement Analysis*, liquefaction settlement is negligible for the site.

Seismic Settlement: Dynamic dry settlement may occur in loose, granular, unsaturated soils during a large seismic event. Based on a site-specific settlement analysis presented in Appendix C, *Liquefaction and Settlement Analysis*, we estimate that the site will have the potential for up to approximately 1.4 inches of total dry seismic settlement.

Lateral Spreading: Seismically induced lateral spreading involves primarily lateral movement of earth materials over underlying materials which are liquefied due to ground shaking. It differs from slope failure in that complete ground failure involving large movement does not occur due to the relatively smaller gradient of the initial ground surface. Lateral spreading is demonstrated by near-vertical cracks with predominantly horizontal movement of the soil mass involved. The topography at the project site and in the immediate vicinity is very flat. Under these circumstances, the potential for lateral spreading at the subject site is considered low to moderate.

Tsunamis: Tsunamis are tidal waves generated in large bodies of water by fault displacement or major ground movement. Based on the inland location of the site, tsunamis do not pose a hazard to this site.

Seiches: Seiches are large waves generated in enclosed bodies of water in response to ground shaking. Review of the area adjacent to the site indicates that there are no significant up-gradient lakes or reservoirs with the potential of flooding the site.

Earthquake-Induced Flooding: This is flooding caused by failure of dams or other water-retaining structures as a result of earthquakes. Review of the California Department Of Water Resources Dam Inundation Map and the San Bernardino County Hazard Map (DWR, San Bernardino County, 2019a) indicates the site is not located in any potential inundation path of any reservoir. The potential for flooding of the site due to dam failure is considered very low.

8.0 LABORATORY TEST RESULTS

Laboratory testing was performed to determine the physical and chemical characteristics and engineering properties of the subsurface soils. Tests results are included in Appendix A, *Field Exploration* and Appendix B, *Laboratory Testing Program*. Discussions of the various test results are presented below.

8.1 Physical Testing

- <u>In-situ Moisture and Dry Density</u> *In-situ* dry density and moisture content of the subsurface alluvium soils were determined in accordance with ASTM Standard D2216 and D2937. The Dry densities of the alluvial soils at the site ranged from 83.0 to 118.0 pcf with moisture contents ranging from 1 to 17 percent. Results are presented in the log of borings in Appendix A, *Field Exploration.*
- <u>Expansion Index</u> –Four representative bulk soil samples from the upper 5 feet of the site materials were tested in accordance with ASTM Standard D4829 to evaluate the expansion potential. The test results indicated an expansion index of 0, corresponding to very low expansion potential.
- <u>R-Value</u> Two representative bulk samples were tested in accordance with Caltrans Test Method 301. The results of the R-value tests were 74 and 81.
- <u>Collapse Potential</u> The collapse potential of three relatively undisturbed samples were tested in accordance with ASTM Standard D4546 under a vertical stress of up to 2.0 kips per square foot (ksf). The test results showed collapse potential of 0.6 to 1.5 percent, indicating none to slight collapse potential.
- <u>Grain Size Analysis</u> –Four representative samples were tested in accordance with ASTM Standard D6913 to determine the relative grain size distribution. The test results are graphically presented in Drawing No. B-1, *Grain Size Distribution Results*.
- <u>Maximum Dry Density and Optimum Moisture Content</u> Typical moisture-density relationships of two representative soil samples were performed in accordance with ASTM Standard D1557. The test results are presented in Drawing No. B-2, *Moisture-Density Relationship Results*, in Appendix B, *Laboratory Testing Program*. The laboratory maximum dry density was 118.2 and 121.0 pounds per cubic feet (pcf), with optimum moisture contents of 10.5 and 8.3 percent, respetively.
 - <u>Direct Shear</u> –Two direct shear tests were performed in accordance with ASTM Standard D3080 on relatively undisturbed ring samples. The direct shear test results are presented in Drawings No. B-3 and B-4, *Direct Shear Test Results* in Appendix B, *Laboratory Testing Program*.
- <u>Consolidation Test</u> Two consolidation tests were conducted in accordance with ASTM Standard D2435 method. For test results, including sample density and moisture content, see Drawing Nos. B-5 and B-6, *Consolidation Test Results* in Appendix B, *Laboratory Testing Program*.

8.2 Chemical Testing - Corrosivity Evaluation

Two representative soil samples were tested to determine minimum electrical resistivity, pH, and chemical content, including soluble sulfate and chloride concentrations. The purpose of these tests was to determine the corrosion potential of site soils when placed in contact with common pipe materials. These tests were performed by AP Engineering and Testing, Inc. (Pomona, CA) in accordance with California Test Methods 643, 422, and 417. The test results are summarized on the table below and are presented in Appendix B, *Laboratory Testing Program.*

Table No. 6, Summary of Corrosivity Test Results

Boring No.	Depth (feet)	рН	Soluble Sulfates (CA 417) (ppm)	Soluble Chlorides (CA 422) (ppm)	Min. Resistivity (CA 643) (Ohm-cm)
BH-03	3.0-8.0	8.0	187	18	3,989
BH-07	0.0-2.0	8.1	16	17	33,110

9.0 PERCOLATION TESTING

Two percolation tests (PT-01 and PT-02) were performed on December 9, 2022, to evaluate water infiltration rate. The measured percolation test data and calculations are represented in Appendix D, *Percolation Testing*. The estimated and design infiltration rates at each test hole are presented in the following table.

Table No. 7, Estimated Infiltration Rates

Percolation Test	Approx. Depth of Boring (feet)	Predominant Soil Types (USCS)	Average Percolation Rate (inches/hour)
PT-01	5.3	Silty Sand (SM)	1.82
PT-02	10.2	Silty Sand (SM)	6.30

Based on the calculated infiltration rate during the final respective intervals in each test, a design infiltration rate of 1.82 and 6.30 (inches/hour) can be used for depth of 5 feet and 10 feet respectfully for selected percolation testing locations. Please note that infiltration rates may change if the soil type and location of the proposed system changes. If that is the case, then additional percolation testing should be performed in the required location.

10.0 EARTHWORK RECOMMENDATIONS

Earthwork recommendations for the project are presented in the following sections.

10.1 General

This section contains our general recommendations regarding earthwork and grading for the project. These recommendations are based on the results of our field exploration, laboratory tests, our experience with similar projects, and data evaluation as presented in the preceding sections. These recommendations may require modification by the geotechnical consultant based on observation of the actual field conditions during grading. Prior to the start of construction, all existing underground utilities and appurtenances should be located at the project site. Such utilities should either be protected in-place or removed and replaced during construction as required by the project specifications. All excavations should be conducted in such a manner as not to cause loss of bearing and/or lateral support of existing utilities and structure (if any).

All debris, deleterious material, artificial fill and demolished materials should be removed from the site.

The final bottom surfaces of all excavations should be observed and approved by the project geotechnical consultant prior to placing any fill. Based on these observations, localized areas may require remedial grading deeper than indicated herein. Therefore, some variations in the depth and lateral extent of excavation recommended in this report should be anticipated.

10.2 Remedial Grading

Structures and building footings should be uniformly supported by compacted fill. In order to provide uniform support, structural areas should be overexcavated, scarified, and recompacted as follows.

Table No.	8, Ov	erexcavatio	on Depths
-----------	-------	-------------	-----------

Structure	Minimum Overexcavation Depth
Building Footings	18 inches below footings bottom or 3 feet below ground surface, whichever is deeper
Slab-on-Grade	15 inches below slab bottom
Pavement	12 inches below finish grade

The overexcavation should extend to at least 2 feet beyond the footprint of the footings, slabs or building foundations and at least 1 foot beyond the edge of pavement. The overexcavation bottom should be scarified and compacted as described in Section 10.4, *Compacted Fill Placement*.

If isolated pockets of very soft, loose, eroded, or pumping soil are encountered, the unstable soil should be excavated as needed to expose undisturbed, firm, and unyielding soils.

The contractor should determine the best manner to conduct the excavations, such that there are no losses of bearing and/or lateral support to the existing structures or utilities (if any).

10.3 Engineered Fill

No fill should be placed until excavations and/or natural ground preparation have been observed by the geotechnical consultant. The native soils encountered within the project sites are generally considered suitable for re-use as compacted fill. Excavated soils should be processed, including removal of roots and debris, removal of oversized particles, mixing, and moisture conditioning, before placing as compacted fill. On-site soils used as fill should meet the following criteria.

- No particles larger than 3 inches in largest dimension.
- Rocks larger than one inch should not be placed within the upper 12 inches of subgrade soil.
- Free of all organic matter, debris, or other deleterious material.
- Expansion index of 30 or less.
- Sand Equivalent greater than 15 (greater than 30 for pipe bedding).
- Contain less than 30 percent by weight retained in 3/4-inch sieve.
- Contain less than 40 percent fines (passing #200 sieve).

Based on field investigation and laboratory testing results, on-site soils may be suitable as fill materials provided proper screenings will be performed to remove large sized particles to meet above mentioned criteria.

Imported materials, if required, should meet the above criteria prior to being used as compacted fill. Any imported fills should be tested and approved by the geotechnical representative prior to delivery to the sites.

10.4 Compacted Fill Placement

All surfaces to receive structural fills should be scarified to a depth of 6 inches. The soil should be moisture conditioned to within ± 3 percent of optimum moisture content for coarse soils and 0 to 2 percent above optimum moisture content for fine soils. The scarified soils should be recompacted to at least 90 percent of the laboratory maximum dry density.

Fill soils should be mixed thoroughly, and moisture conditioned to within ±3 percent of optimum moisture content for coarse soils and 0 to 2 percent above optimum moisture

content for fine soils. Fill soils should be evenly spread in horizontal lifts not exceeding 8 inches in uncompacted thickness.

All fill placed at the site should be compacted to at least 90 percent of the laboratory maximum dry densities as determined by ASTM Standard D1557 test method, unless a higher compaction is specified herein.

Fill materials should not be placed, spread or compacted during unfavorable weather conditions. When sites grading is interrupted by heavy rain, filling operations should not resume until the geotechnical consultant approves the moisture and density conditions of the previously placed fill.

10.5 Shrinkage and Subsidence

The volume of excavated and recompacted soils will decrease as a result of grading. The shrinkage would depend on, among other factors, the depth of cut and/or fill, and the grading method and equipment utilized. Based on our previous experience in the other projects in close vicinity of this site, for the preliminary estimation, shrinkage factors for various units of earth material at the site may be taken as presented below.

- The shrinkage factor (defined as a percentage of soil volume reduction when moisture conditioned and compacted to the average of 92 percent relative compaction) for the alluvial soils is estimated. An average value of 10 percent may be used for preliminary earthwork planning.
- Subsidence (defined as the settlement of native materials from the equipment load applied during grading) would depend on the construction methods including type of equipment utilized. Ground subsidence is estimated to be approximately 0.1 foot to 0.15 foot.

Although these values are only approximate, they represent our best estimates of the factors to be used to calculate lost volume that may occur during grading. If more accurate shrinkage and subsidence factors are needed, it is recommended that field-testing using the actual equipment and grading techniques be conducted.

10.6 Site Drainage

Adequate positive drainage should be provided away from the structures and excavation areas to prevent ponding and to reduce percolation of water into the foundation soils. A desirable drainage gradient is 1 percent for paved areas and 2 percent in landscaped areas. Surface drainage should be directed to suitable non-erosive devices.

11.0 UTILITY TRENCH BACKFILL

The following sections present earthwork recommendations for utility trench backfill, including subgrade preparation and trench zone backfill.

Open cuts adjacent to existing roadways or structures are not recommended within a 1:1 (horizontal: vertical) plane extending down and away from the roadway or structure perimeter (if any).

Soils from the trench excavation should not be stockpiled more than 6 feet in height or within a horizontal distance from the trench edge equal to the depth of the trench. Soils should not be stockpiled behind the shoring, if any, within a horizontal distance equal to the depth of the trench, unless the shoring has been designed for such loads.

11.1 Pipe Sub-grade Preparation

The final subgrade surface should be level, firm, uniform, and free of loose materials and properly graded to provide uniform bearing and support to the entire section of the pipe placed on bedding material. Protruding oversize particles larger than 2 inches in dimension, if any, should be removed from the trench bottom and replaced with compacted on-sites materials.

Any loose, soft and/or unsuitable materials encountered at the pipe subgrade should be removed and replaced with an adequate bedding material. During the digging of depressions for proper sealing of the pipe joints, the pipe should rest on a prepared bottom for as near its full length as is practicable.

11.2 Pipe Bedding

Bedding is defined as the material supporting and surrounding the pipe to 1 foot above the pipe. Recommendations for pipe bedding are provided below.

To provide uniform and firm support for the pipe, compacted granular materials such as clean sand, gravel or ³/₄-inch crushed aggregate, or crushed rock may be used as pipe bedding material. Typically, soils with sand equivalent value of 30 or more are used as pipe bedding material. The pipe designer should determine if the soils are suitable as pipe bedding material.

The type and thickness of the granular bedding placed underneath and around the pipe, if any, should be selected by the pipe designer. The load on the rigid pipes and deflection of flexible pipes and, hence, the pipe design, depends on the type and the amount of bedding placed underneath and around the pipe.

Bedding materials should be vibrated in-place to achieve compaction. Care should be taken to densify the bedding material below the springline of the pipe. Prior to placing the pipe bedding material, the pipe subgrade should be uniform and properly graded to provide uniform bearing and support to the entire section of the pipe placed on bedding material.

Migration of fines from the surrounding native and/or fill soils must be considered in selecting the gradation of any imported bedding material. We recommend that the pipe bedding material should satisfy the following criteria to protect migration of fine materials.

- i. $\frac{D15(F)}{D85(B)} \le 5$
- ii. <u>D50(F)</u> D50(B) < 25
- iii. Bedding Materials must have less than 5 percent passing No. 200 sieve (0.0074 mm) to avoid internal movement of fines.

Where,

F	=	Bedding Material
В		Surrounding Native and/or Fill Soils
<i>D</i> 15(F)	=	Particle size through which 15% of bedding material will pass
<i>D</i> 85(B)	=	Particle size through which 85% of surrounding soil will pass
<i>D</i> 50(F)	Ā	Particle size through which 50% of bedding material will pass
D50(B)	F	Particle size through which 50% of surrounding soil will pass

If the above criteria do not satisfy, commercially available geofabric used for filtration purposes (such as Mirafi 140N or equivalent) may be wrapped around the bedding material encasing the pipe to separate the bedding material from the surrounding native or fill soils.

11.3 Trench Zone Backfill

The trench zone is defined as the portion of the trench above the pipe bedding extending up to the final grade level of the trench surface. Excavated sites soil free of oversize particles and deleterious matter may be used to backfill the trench zone. Detailed trench backfill recommendations are provided below.

- Trench excavations to receive backfill should be free of trash, debris or other unsatisfactory materials at the time of backfill placement.
- Trench zone backfill should be compacted to at least 90 percent of the laboratory maximum dry density as per ASTM D1557 test method. At least the upper 1 foot

of trench backfill underlying pavement should be compacted to at least 95 percent of the laboratory maximum dry density as per ASTM D1557 test method.

- Particles larger than 1 inch should not be placed within 12 inches of the pavement subgrade. No more than 30 percent of the backfill volume should be larger than ³/₄-inch in the largest dimension. Gravel should be well mixed with finer soil. Rocks larger than 3 inches in the largest dimension should not be placed as trench backfill.
- Trench backfill should be compacted by mechanical methods, such as sheepsfoot, vibrating or pneumatic rollers or mechanical tampers to achieve the density specified herein. The backfill materials should be brought to within ± 3 percent of optimum moisture content for coarse-grained soil, and between optimum and 2 percent above optimum for fine-grained soil, then placed in horizontal layers. The thickness of uncompacted layers should not exceed 8 inches. Each layer should be evenly spread, moistened or dried as necessary, and then tamped or rolled until the specified density has been achieved.
- The contractor should select the equipment and processes to be used to achieve the specified density without damage to adjacent ground, structures, utilities and completed work.
- The field density of the compacted soil should be measured by the ASTM D1556 (Sand Cone) or ASTM D6938 (Nuclear Gauge) or equivalent.
- Observations and field tests should be performed by the project soils consultant to confirm that the required degree of compaction has been obtained. Where compaction is less than that specified, additional compactive effort should be made with adjustment of the moisture content as necessary, until the specified compaction is obtained.
- It should be the responsibility of the contractor to maintain safe working conditions during all phases of construction.
- Trench backfill should not be placed, spread or rolled during unfavorable weather conditions. When the work is interrupted by heavy rain, fill operations should not resume until field tests by the project's geotechnical consultant indicate that the moisture content and density of the fill are in compliance with project specifications.

12.0 DESIGN RECOMMENDATIONS

The various design recommendations provided in this section are based on the assumption that the above earthwork and grading recommendations will be implemented in the project design and construction.

12.1 Shallow Foundation Design Parameters

The proposed pole barn and buildings may be supported on continuous or isolated spread footings. The design of the shallow foundations should be based on the recommended parameters presented in the table below.

Table No. 9, Recommended Foundation Parameters

Parameter	Value
Minimum continuous footing width	18 inches
Minimum isolated footing width	18 inches
Minimum continuous or isolated footing depth of embedment below lowest adjacent grade	18 inches
Allowable net bearing capacity	2,500 psf

The footing dimensions and reinforcement should be based on structural design. The allowable bearing capacity can be increased by 500 pounds per square foot (psf) with each foot of additional embedment and 100 psf with each foot of additional width up to a maximum of 3,500 psf.

The net allowable bearing values indicated above are for the dead loads and frequently applied live loads and are obtained by applying a factor of safety of 3.0 to the net ultimate bearing capacity. If normal code requirements are applied for design, the above vertical bearing value may be increased by 33 percent for short duration loadings, which will include loadings induced by wind or seismic forces.

12.2 Lateral Earth Pressures and Resistance to Lateral Loads

In the following subsections, the lateral earth pressures and resistance to lateral loads are estimated by using on-site native soils strength parameters obtained from laboratory testing.

12.2.1 Active Earth Pressures

The active earth pressure behind any buried wall or foundation depends primarily on the allowable wall movement, type of backfill materials, backfill slopes, wall or foundation inclination, surcharges, and any hydrostatic pressures. The lateral earth pressures for the project site are presented in the following tables.

Table No. 10, Active and At-Rest Earth Pressures

Loading Conditions	Lateral Earth Pressure ¹ (psf)
Active earth conditions (wall is free to deflect at leas radian)	t 0.001 45
At-rest (wall is restrained)	65

These pressures assume a level ground surface around the structure for a distance greater than the structure height, no surcharge, and no hydrostatic pressure.

If water pressure is allowed to build up behind the structure, the active pressures should be reduced by 50 percent and added to a full hydrostatic pressure to compute the design pressures against the structure.

12.2.2 Passive Earth Pressure

Resistance to lateral loads can be assumed to be provided by a combination of friction acting at the base of foundations and by passive earth pressure. A coefficient of friction of 0.35 between formed concrete and soil may be used with the dead load forces. An allowable passive earth pressure of 220 psf per foot of depth may be used for the sides of footings poured against recompacted soils. A factor of safety of 1.5 was applied in calculating passive earth pressure. The maximum value of the passive earth pressure should be limited to 2,500 psf for compacted fill.

Vertical and lateral bearing values indicated above are for the total dead loads and frequently applied live loads. If normal code requirements are applied for design, the above vertical bearing and lateral resistance values may be increased by 33 percent for short duration loading, which will include the effect of wind or seismic forces.

Due to the low overburden stress of the soil at shallow depth, the upper 1 foot of passive resistance should be neglected unless the soil is confined by pavement or slab.

12.2.3 Seismic Earth Pressure

The seismic force applied to structural wall is based on a horizontal seismic acceleration coefficient equal to one-third of the peak ground. An equivalent fluid seismic pressure of 24H pcf may be assumed under active loading conditions (regular triangular pressure distribution) where H is the height of the backfill behind the wall.

12.3 Slabs-on-Grade

Slabs-on-grade should be supported on properly compacted fill. Compacted fill used to support slabs-on-grade should be placed and compacted in accordance with Section 10.4 *Compacted Fill Placement*.

Structural design elements of slabs-on-grade, including but not limited to thickness, reinforcement, joint spacing of more heavily loaded slabs will be dependent upon the anticipated loading conditions and the modulus of subgrade reaction (200 kcf) of the supporting materials and should be designed by a structural engineer.

Slabs should be designed and constructed as promulgated by the American Concrete Institute (ACI) and the Portland Cement Association (PCA). Care should be taken during concrete placement to avoid slab curling. Prior to the slab pour, all utility trenches should be properly backfilled and compacted.

Subgrade for slabs-on-grade should be firm and uniform. All loose or disturbed soils including under-slab utility trench backfill should be recompacted.

In hot weather, the contractor should take appropriate curing precautions after placement of concrete to minimize cracking or curling of the slabs. The potential for slab cracking may be lessened by the addition of fiber mesh to the concrete and/or control of the water/cement ratio.

Concrete should be cured by protecting it against loss of moisture and rapid temperature change for at least 7 days after placement. Moist curing, waterproof paper, white polyethylene sheeting, white liquid membrane compound, or a combination thereof may be used after finishing operations have been completed. The edges of concrete slabs exposed after removal of forms should be immediately protected to provide continuous curing.

12.4 Soil Parameters for Pipe Design

Structural design requires proper evaluation of all possible loads acting on pipe. The stresses and strains induced on buried pipe depend on many factors, including the type of soil, density, bearing pressure, angle of internal friction, coefficient of passive earth pressure, and coefficient of friction at the interface between the backfill and native soils. The recommended values of the various soil parameters for design are provided in the following table.

Table No. 11, Soil Parameters for Pipe Design

Soil Parameters	Value
Average compacted fill total unit weight (assuming 92% relative compaction), γ (pcf)	124
Angle of internal friction of soils, ϕ	28
Soil cohesion, c (psf)	35
Coefficient of friction between concrete and native soils, fs	0.35
Coefficient of friction between PVC pipe and native soils, fs	0.25
Bearing pressure against native soils (psf)	2,500
Coefficient of passive earth pressure, Kp	2.77
Coefficient of active earth pressure, Ka	0.36
Modulus of Soil Reaction E' (psi)	1,500

12.5 Settlement

The total settlement of shallow footings designed as recommended above, from static structural loads and short-term settlement of properly compacted fill is anticipated to be

0.5 inch or less. The static differential settlement can be taken as equal to one-half of the static total settlement over a lateral distance of 40 feet.

Our analysis of the potential dynamic settlement is presented in Appendix C, *Liquefaction and Settlement Analysis*. We estimate that the site has negligible potential for liquefaction induced settlement with up to 1.44 inches of dry seismic settlement. The soil profile across the site is relatively similar. So, we anticipate that the total settlement will be uniform. We recommend that the planned structure be designed in anticipation of dynamic differential settlement of 0.72 inches in 40 horizontal feet.

Generally, static, and dynamic settlement does not occur at the same time. For design purposes, the structural engineer should decide whether static and dynamic settlement will be combined or not.

12.6 Soil Corrosivity

The results of chemical testing of a representative sample of site soils were evaluated for corrosivity evaluation with respect to common construction materials such as concrete and steel. The test results are presented in Appendix B, *Laboratory Testing Program*, Summary of Corrosivity Test Results, and are discussed below.

The sulfate contents of the soils tested correspond to American Concrete Institute (ACI) exposure category S0 for these sulfate concentration (ACI 318-14, Table 19.3.1.1) ACI recommends a minimum compressive strength of 2,500 psi for exposure category S0 in ACI 318-14, Table 19.3.2.1.

We anticipate that concrete structures such as footings, slabs, and flatwork will be exposed to moisture from precipitation and irrigation. Based on the project location and the results of chloride testing of the site soils, we do not anticipate that concrete structures will be exposed to external sources of chlorides, such as deicing chemicals, salt, brackish water, or seawater. ACI specifies exposure category C1 where concrete is exposed to moisture, but not to external sources of chlorides (ACI 318-14, Table 19.3.1.1). ACI provides concrete design recommendations in ACI 318-14, Table 19.3.2.1, including a minimum compressive strength of 2,500 psi, and a maximum chloride content of 0.3 percent.

According to Romanoff, 1957, the following table provides general guideline of soil corrosion based on electrical resistivity.

Table No. 12, Conclution Detween Resistivity and Concosion			
Soil Resistivity (ohm-cm) per Caltrans CT 643	Corrosivity Category		
Over 10,000	Mildly corrosive		
2,000 - 10,000	Moderately corrosive		
1,000 – 2,000	corrosive		
Less than 1,000	Severe corrosive		

Table No. 12, Correlation Between Resistivity and Corrosion

The measured values of the minimum electrical resistivities when saturated were 3,989 and 33,110 Ohm-cm. This indicates that the soils tested are mild to moderately corrosive for ferrous metals in contact with the soils. <u>Converse does not practice in the area of corrosion consulting. If needed, a qualified corrosion consultant should provide appropriate corrosion mitigation measures for ferrous metals in contact with the site soils.</u>

12.7 Flexible Pavement Recommendations

R-values of the subgrade soils were 74 and 81. For pavement design, we have utilized an R-value of 50 and design Traffic Indices (TIs) ranging from 5 to 8.

Based on the above information, asphalt concrete and aggregate base thickness results are presented using the Caltrans Highway Design Manual (Caltrans, 2020), Chapter 630 with a safety factor of 0.2 for asphalt concrete/aggregate base section and 0.1 for full depth asphalt concrete section. Preliminary asphalt concrete pavement sections are presented in the following table below.

		Pavement Section		
Traffic Index		Option 1		Option 2
R-vaiue	(TI)	Asphalt Concrete (inches)	Aggregate Base (inches)	Full AC Section (inches)
50	5	3.0	3.0	4.5
	6	3.5	3.5	5.5
	7	4.0	4.5	7.0
	8	5.0	5.0	8.5

Table No. 13, Recommended Preliminary Flexible Pavement Sections

At or near the completion of grading, subsurface samples should be tested to evaluate the actual subgrade R-value for final pavement design.

Prior to placement of aggregate base, at least 12 inches below finish grade should be overexcavated, processed and replaced as compacted fill (recompacted to at least 95

percent of the laboratory maximum dry density as defined by ASTM Standard D1557 test method).

Base materials should conform with Section 200-2.2,"*Crushed Aggregate Base*," of the current Standard Specifications for Public Works Construction (SSPWC; Public Works Standards, 2021) and should be placed in accordance with Section 301.2 of the SSPWC.

Asphaltic concrete materials should conform to Section 203 of the SSPWC and should be placed in accordance with Section 302.5 of the SSPWC.

12.8 Rigid Pavement Recommendations

Rigid pavement design recommendations were provided in accordance with the Portland Cement Association's (PCA) Southwest Region Publication P-14, Portland Cement Concrete Pavement (PCCP) for Light, Medium and Heavy Traffic Rigid Pavement. For pavement design, we have utilized a design subgrade R-value of 50 and design Traffic Indices (TIs) ranging from 5 to 8. We recommend that the project structural engineer consider the loading conditions at various locations and select the appropriate pavement sections from the following table:

Design R-Value	Design Traffic Index (TI)	PCCP Pavement Section (inches)
	5.0	6.0
50	6.0	6.5
50	7.0	6.5
	8.0	7.0

Table No. 14, Recommended Preliminary Rigid Pavement Sections

The above pavement section is based on a minimum 28-day Modulus of Rupture (M-R) of 550 psi and a compressive strength of 3,750 psi. The third point method of testing beams should be used to evaluate modulus of rupture. The concrete mix design should contain a minimum cement content of 5.5 sacks per cubic yard. Recommended maximum and minimum values of slump for pavement concrete are 3.0 inches to 1.0 inch, respectively.

Transverse contraction joints should not be spaced more than 10 feet and should be cut to a depth of 1/4 the thickness of the slab. Longitudinal joints should not be spaced more than 12 feet apart. A longitudinal joint is not necessary in the pavement adjacent to the curb and gutter section.

Prior to placement of concrete, at least the upper 12.0 inches of subgrade soils below rigid pavement sections should be compacted to at least 95% relative compaction as defined by the ASTM D 1557 standard test method.

Positive drainage should be provided away from all pavement areas to prevent seepage of surface and/or subsurface water into pavement base and/or subgrade.

12.9 Concrete Flatwork

Except as modified herein, concrete walks, driveways, access ramps, curb and gutters should be constructed in accordance with Section 303-5, *Concrete Curbs, Walks, Gutters, Cross-Gutters, Alley Intersections, Access Ramps, and Driveways*, of the Standard Specifications for Public Works Construction (Public Works Standards, 2021).

The subgrade soils under the above structures should consist of compacted fill placed as described in this report. Prior to placement of concrete, the upper 2 feet of subgrade soils should be moisture conditioned within 3 percent of optimum moisture content for coarse-grained soils and 0 to 2 percent above optimum for fine-grained soils.

The cement concrete thickness of driveways for passenger vehicles should be at least 4 inches, or as required by the civil or structural engineer. Transverse control joints for driveways should be spaced not more than 10 feet apart. Driveways wider than 12 feet should be provided with a longitudinal control joint.

13.0 CONSTRUCTION RECOMMENDATIONS

Temporary sloped excavation recommendations are presented in the following sections.

13.1 General

Prior to the start of construction, all existing underground utilities (if any) should be located at the project site. Such utilities should either be protected in-place or removed and replaced during construction as required by the project specifications.

Sloped excavations may not be feasible in locations adjacent to existing utilities, pavement, or structure (if any). Recommendations pertaining to temporary excavations are presented in this section.

Excavations near existing structures may require vertical side wall excavation. Where the side of the excavation is a vertical cut, it should be adequately supported by temporary shoring to protect workers and any adjacent structures.

All applicable requirements of the California Construction and General Industry Safety Orders, the Occupational Safety and Health Act, and the Construction Safety Act should be met. The soil exposed in cuts should be observed during excavation by the geotechnical consultant and the competent person designated by the contractor. If potentially unstable soil conditions are encountered, modifications of slope ratios for temporary cuts may be required.

13.2 Temporary Sloped Excavations

Temporary open-cut trenches may be constructed with side slopes as recommended in the following table. Temporary cuts encountering soft and wet fine-grained soils; dry loose, cohesionless soils or loose fill from trench backfill may have to be constructed at a flatter gradient than presented below.

Table No. 15, Slope Ratios for Temporary Excavations

Soil Type	OSHA	Depth of	Recommended Maximum
	Soil Type	Cut (feet)	Slope (Horizontal:Vertical) ¹
Silty Sand (SM), Sand with Silt and Gravel (SP-SM), Sand (SP)	С	0-10	1.5:1

¹ Slope ratio assumed to be uniform from top to toe of slope.

For shallow excavations up to 4 feet bgs can be vertical. For steeper temporary construction slopes or deeper excavations, or unstable soil encountered during the excavation, shoring or trench shields should be provided by the contractor to protect the workers in the excavation.

Surfaces exposed in slope excavations should be kept moist but not saturated to retard raveling and sloughing during construction. Adequate provisions should be made to protect the slopes from erosion during periods of rainfall. Surcharge loads, including construction materials, should not be placed within 5 feet of the unsupported slope edge. Stockpiled soils with a height higher than 6 feet will require greater distance from trench edges.

14.0 GEOTECHNICAL SERVICES DURING CONSTRUCTION

The project geotechnical consultant should review plans and specifications as the project design progresses. Such a review is necessary to identify design elements, assumptions, or new conditions which require revisions or additions to our geotechnical recommendations.

The project geotechnical consultant should be present to observe conditions during construction. Geotechnical observation and testing should be performed as needed to verify compliance with project specifications. Additional geotechnical recommendations may be required based on subsurface conditions encountered during construction.

15.0 CLOSURE

This report is prepared for the project described herein and is intended for use solely by Miller Architectural Corporation, San Bernardino County Real Estate Services-Project Management, and their authorized agents, to assist in the development of the proposed project. Our findings and recommendations were obtained in accordance with generally

accepted professional principles practiced in geotechnical engineering. We make no other warranty, either expressed or implied.

Converse Consultants is not responsible or liable for any claims or damages associated with interpretation of available information provided to others. Site exploration identifies actual soil conditions only at those points where samples are taken, when they are taken. Data derived through sampling and laboratory testing is extrapolated by Converse employees who render an opinion about the overall soil conditions. Actual conditions in areas not sampled may differ. In the event that changes to the project occur, or additional, relevant information about the project is brought to our attention, the recommendations contained in this report may not be valid unless these changes and additional relevant information are reviewed, and the recommendations can only be finalized by observing actual subsurface conditions revealed during construction. Converse cannot be held responsible for misinterpretation or changes to our recommendations made by others during construction.

As the project evolves, a continued consultation and construction monitoring by a qualified geotechnical consultant should be considered an extension of geotechnical investigation services performed to date. The geotechnical consultant should review plans and specifications to verify that the recommendations presented herein have been appropriately interpreted, and that the design assumptions used in this report are valid. Where significant design changes occur, Converse may be required to augment or modify the recommendations presented herein. Subsurface conditions may differ in some locations from those encountered in the explorations, and may require additional analyses and, possibly, modified recommendations.

Design recommendations given in this report are based on the assumption that the recommendations contained in this report are implemented. Additional consultation may be prudent to interpret Converse's findings for contractors, or to possibly refine these recommendations based upon the review of the actual site conditions encountered during construction. If the scope of the project changes, if project completion is to be delayed, or if the report is to be used for another purpose, this office should be consulted.

16.0 REFERENCES

- AMERICAN CONCRETE INSTITUTE (ACI), 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, dated October 2014.
- AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE), 2017, Minimum Design Loads for Buildings and Other Structures, SEI/ASCE Standard No. 7-16, dated 2017.
- Appendix VII, Infiltration Rate, Evaluation Protocol and Factor of Safety Recommendations, San Bernardino County, 2013.
- CALIFORNIA BUILDING STANDARDS COMMISSION (CBSC), 2022, California Building Code (CBC).
- CALIFORNIA DEPARTMENT OF TRANSPORTATION (Caltrans), 2020, Highway Design Manual, dated January 2020.
- CALIFORNIA GEOLOGICAL SURVEY (CGS), 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Faulting Zoning Act with Index to Earthquake Fault Zone Maps, Special Publication 42, revised 2007.
- CALIFORNIA STATE WATER RESOURCES CONTROL BOARD (SWRCB), 2023, GeoTracker database (http://geotracker.waterboards.ca.gov/), accessed in January 2023.
- CALIFORNIA DEPARTMENT OF WATER RESOURCES (DWR), 2023, Water Data Library (http://wdl.water.ca.gov/waterdatalibrary/), accessed January 2023.
- COUNTY OF LOS ANGELES, 2013, Manual for the Preparation of Geotechnical Reports, July 1, 2013.
- DAS, B.M., 2011, Principles of Foundation Engineering, Seventh Edition, published by Global Engineering, 2011.
- DEPARTMENT OF WATER RESOURCES DIVISION OF SAFETY OF DAMS (DSOD), 2023, California Dam Breach Inundation Maps, (https://fmds.water.ca.gov/webgis/?appid=dam_prototype_v2), accessed in January 2023.
- FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA), 2008, Flood Insurance Rate Map, Riverside County, California and Incorporated Areas, Map No. 06065C0684G, effective date August 28, 2008.

- MORTON, D.M. and MILLER, F.K., 2006, Geologic Map of the San Bernardino and Santa Ana 30' x 60' Quadrangles, California, U.S. Geological Survey Open-File Report 2006-1217, scale 1:100,000.
- MOSER A. P. Buried Pipe Design, Second Edition, published by McGraw-Hill, 2001.
- PUBLIC WORKS STANDARDS, INC., 2021, Standard Specifications for Public Works Construction ("Greenbook"), 2021.
- ROMANOFF, MELVIN, 1957, Underground Corrosion, National Bureau of Standards Circular 579, dated April 1957.
- SAN BERNARDINO COUNTY, 2013, Technical Guidance Document for Water Quality Management Plans, dated June 7, 2013.
- SAN BERNARDINO COUNTY, 2019a, (San Bernardino County, 2019a) San Bernardino County General Plan Hazard Overlays, Map Sheet FH29B, scale 1:14,400, dated March 9, 2010.
- SAN BERNARDINO COUNTY, 2019b, (San Bernardino County, 2019b) San Bernardino County General Plan Geologic Hazard Overlays, Map Sheet FH29C, scale 1:115,200, dated March 9, 2010.
- U.S. GEOLOGICAL SURVEY (USGS), 2023, National Water Information System: Web Interface (https://maps.waterdata.usgs.gov/mapper/index.html), accessed January 2023.
- U.S. GEOLOGICAL SURVEY (USGS), 2008, 2008 National Seismic Hazard Maps (https://earthquake.usgs.gov/cfusion/hazfaults_2008_search), accessed January 2023

APPENDIX A

FIELD EXPLORATION

Our field investigation included a site reconnaissance and a subsurface exploration program consisting of drilling soil borings and conducting percolation testing. During the site reconnaissance, the surface conditions were noted, and the borings were marked at locations approved by Mr. Brent Adams with the Miller Architectural Corporation. The approximate boring locations were established in the field using approximate distances from local streets as a guide and should be considered accurate only to the degree implied by the method used to locate them.

Eight soil borings (BH-01 through BH-08) were drilled on December 8, 2022, to investigate the subsurface conditions. The borings were drilled to depths ranging between 5.0 and 50.0 feet below ground surface (bgs).

Two test holes (PT-01 and PT-02) were drilled on December 8, 2022, within the project site to perform water percolation testing. The borings were drilled to depths of 5.3 feet and 10.2 feet below ground surface (bgs) respectively. Details about the percolation tests are presented in Appendix D, *Percolation Testing*. Details of the exploratory borings are presented in the table (No. A-1) below.

Boring	Boring Depth (ft, bgs)		Groundwater Depth	Dete Osmalatad
No.	Proposed	Completed	(ft, bgs)	Date Completed
BH-01	5.0	5.0	N/E	12/8/2022
BH-02	20.0	20.0	N/E	12/8/2022
BH-03	50.0	50.0	N/E	12/8/2022
BH-04	20.0	20.0	N/E	12/8/2022
BH-05	10.0	10.0	N/E	12/8/2022
BH-06	20.0	20.0	N/E	12/8/2022
BH-07	10.0	11.5	N/E	12/8/2022
BH-08	20.0	20.5	N/E	12/8/2022
PT-01	5.0	5.3	N/E	12/8/2022
PT-02	10.0	10.2	N/E	12/8/2022
Note:	_ / /	<u> </u>		

Table No. A-1, Summary of Borings

N/E = Not Encountered

For location of the borings, see Figure No. 2, Approximate Boring and Percolation Test Locations Map.

The borings were advanced using a truck-mounted drill rig equipped with 8-inch diameter hollow-stem augers for soils sampling. Encountered materials were

continuously logged by a Converse Geologist and classified in the field by visual classification in accordance with the Unified Soil Classification System. Where appropriate, the field descriptions and classifications have been modified to reflect laboratory test results.

Relatively undisturbed samples were obtained using California Modified Samplers (2.4 inches inside diameter and 3.0 inches outside diameter) lined with thin sample rings. The steel ring sampler was driven into the bottom of the borehole with successive drops of a 140-pound driving weight falling 30 inches. Blow counts at each sample interval are presented on the boring logs. Samples were retained in brass rings (2.4 inches inside diameter and 1.0 inch in height) and carefully sealed in waterproof plastic containers for shipment to the Converse laboratory. Bulk samples of typical soil types were also obtained in plastic bags.

Standard Penetration Testing (SPT) was also performed in accordance with the ASTM Standard D1586 test using 1.4 inches inside diameter and 2.0 inches outside diameter split-barrel sampler. The mechanically driven hammer for the SPT sampler was 140 pounds, falling 30 inches for each blow. The recorded blow counts for every 6 inches for a total of 1.5 feet of sampler penetration are shown on the Logs of Borings.

The exact depths at which material changes occur cannot always be established accurately. Unless a more precise depth can be established by other means, changes in material conditions that occur between drive samples are indicated on the logs at the top of the next drive sample.

Following the completion of logging and sampling, the borings (BH-01 through BH-08) were backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight. After completion of the percolation testing, pipes were removed from PT-01 and PT-02 and the borings were backfilled with soil cuttings and compacted. If construction is delayed, the surface of the borings may settle over time. We recommend the owner monitor the boring locations and backfill any depressions that might occur or provide protection around the boring locations to prevent trip and fall injuries from occurring near the area of any potential settlement.

For a key to soil symbols and terminology used in the boring logs, refer to Drawing No. A-1a and A-1b, *Unified Soil Classification and Key to Boring Log Symbols*. For logs of borings, see Drawings No. A-2 through A-11, *Logs of Borings*.

SOIL CLASSIFICATION CHART

N	AJOR DIVIS	IONS		BOLS	TYPICAL	
			GRAPH	LETTER	DESCRIPTIONS	FIELD AND LABORATORY TESTS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	C Consolidation (ASTM D 2435) CL Collapse Potential (ASTM D 4546)
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	CP Compaction Curve (ASTM D 1557) CR Corrosion, Sulfates, Chlorides (CTM 643-99; 417; 42
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	CU Consolidated Undrained Triaxial (ASTM D 4767) DS Direct Shear (ASTM D 3080) EI Expansion Index (ASTM D 4829)
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	M Moisture Content (ASTM D 2216) OC Organic Content (ASTM D 2974)
MORE THAN 50% OI	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	P Permeability (ASTM D 2434) PA Particle Size Analysis (ASTM D 6913 [2002])
MATERIAL IS ARGER THAN NO. 200 SIEVE SIZE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES	PI Liquid Limit, Plastic Limit, Plasticity Index (ASTM D 4318)
	MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4	SANDS WITH FINES	<i></i>	SM	SILTY SANDS, SAND - SILT MIXTURES	PL Point Load Index (ASTM D 5731) PM Pressure Meter PP Pocket Penetrometer
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	R R-Value (CTM 301) SE Sand Equivalent (ASTM D 2419)
				ML	INDRGANIC SILING AND VERY FINE SANDS, ROCK FLOUR, SILITY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SILIGHT PLASTICITY INORGANIC CLAYS OF LOW TO	SG Specific Gravity (ASTM D 854) SW Swell Potential (ASTM D 4546)
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	TV Pocket Torvane UC Unconfined Compression - Soil (ASTM D 2166) Unconfined Compression - Rock (ASTM D 7012)
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	UU Unconsolidated Undrained Triaxial (ASTM D 2850) UW Unit Weight (ASTM D 2937)
MORE THAN 50% OF MATERIAL IS				мн	NORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOLS	WA Passing No. 200 Sieve
SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
	LY ORGANIC			РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
UTE: DUAL SY		OTO INDICATE BORD			CATIONS	SAMPLE TYPE STANDARD PENETRATION TEST Split barrel sampler in accordance with ASTM D-1586-84 Standard Test Method DRIVE SAMPLE 2.42" I.D. sampler (CMS).
		DRILLING METH	OD SYMBO	DLS		DRIVE SAMPLE No recovery BULK SAMPLE BULK SAMPLE
	rilling Muc	Rotary Drilling	Dynamic C		Diamond Core	
			or Hand Dr			_

Project ID: 22-81-206-01.GPJ; Template: KEY

Converse Consultants ¹⁸³¹³ Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation

Drawing No. Project No. A-1a 22-81-206-01

j	DHESIVE SOILS	Y OF CC	ONSISTENC	<u> </u>		
Field Approximation	Torvane (tsf)	CA Sampler	Pocket Penetrometer (tsf)	SPT Blow Counts	Unconfined Compressive Strength (tsf)	Descriptor
Easily penetrated several inches by fist	<0.12	<3	<0.25	< 2	<0.25	Very Soft
Easily penetrated several inches by thumb	0.12 - 0.25	3 - 6	0.25 - 0.50	2 - 4	0.25 - 0.50	Soft
Can be penetrated several inches by thumb with moderate effort	0.25 - 0.50	7 - 12	0.50 - 1.0	5 - 8	0.50 - 1.0	Medium Stiff
Readily indented by thumb but penetrated only with great effort	0.50 - 1.0	13 - 25	1.0 - 2.0	9 - 15	1.0 - 2.0	Stiff
Readily indented by thumbnail	1.0 - 2.0	26 - 50	2.0 - 4.0	16 - 30	2.0 - 4.0	Very Stiff
Indented by thumbnail with difficulty	>2.0	>50	>4.0	>30	>4.0	Hard

APPARENT DENSITY OF COHESIONLESS SOILS								
Descriptor	SPT N ₆₀ - Value (blows / foot)	CA Sampler						
Very Loose	<4	<5						
Loose	4- 10	5 - 12						
Medium Dense	11 - 30	13 - 35						
Dense	31 - 50	36 - 60						
Very Dense	>50	>60						

PERCENT OF PROPORTION OF SOILS

Particles are present but estimated to be less than 5%

Criteria

Descriptor

Scattered (coarse)

Trace (fine)/

_			
	Descriptor	Cr	iteria
	Dry	Ab	sence of moisture, dusty, dry to the touch
	Moist	Da	imp but no visible water
	Wet		sible free water, usually soil is below ter table
			•
_			
		SOIL	PARTICLE SIZE
	Descriptor		Size
	Boulder		> 12 inches
1	Cobble		3 to 12 inches
ľ	Gravel	Coarse	3/4 inch to 3 inches
	Glavel	Fine	No. 4 Sieve to 3/4 inch
		Coarse	No. 10 Sieve to No. 4 Sieve

MOISTURE

			0000010		
Few	5 to 10%		Gravel	Coarse	3/4 inch to 3 inches
Little	15 to 25%		Claver	Fine	No. 4 Sieve to 3/4 inch
Some	30 to 45%		Sand	Coarse Medium Fine	No. 10 Sieve to No. 4 Sieve No. 40 Sieve to No. 10 Sieve No. 200 Sieve to No. No. 40 Sieve
Mostly	50 to 100%		Silt and Clay		Passing No. 200 Sieve
		PLASTICITY O	F FINE-GRAINED	SOILS	

Descriptor	Criteria
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

CEMENTATION/ Induration Descriptor Criteria Crumbles or breaks with handling or Weal ttle finger pressure. Moderate Crumbles or breaks with considerable finger pressure. Strong Will not crumble or break with finger pressure.

NOTE: This legend sheet provides descriptions and associated criteria for required soil description components only. Refer to Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), Section 2, for tables of additional soil description components and discussion of soil description and identification.

UNIFIED SOIL CLASSIFICATION AND KEY TO BORING LOG SYMBOLS

Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation

Project No. Drawing No. 22-81-206-01 A-1b

Project ID: 22-81-206-01.GPJ; Template: KEY

Log of	Boring	No.	BH-01
--------	--------	-----	-------

Date Drilled:

12/8/2022

Logged by: <u>Stephen McPherson</u> Checked By:

Hashmi Quazi

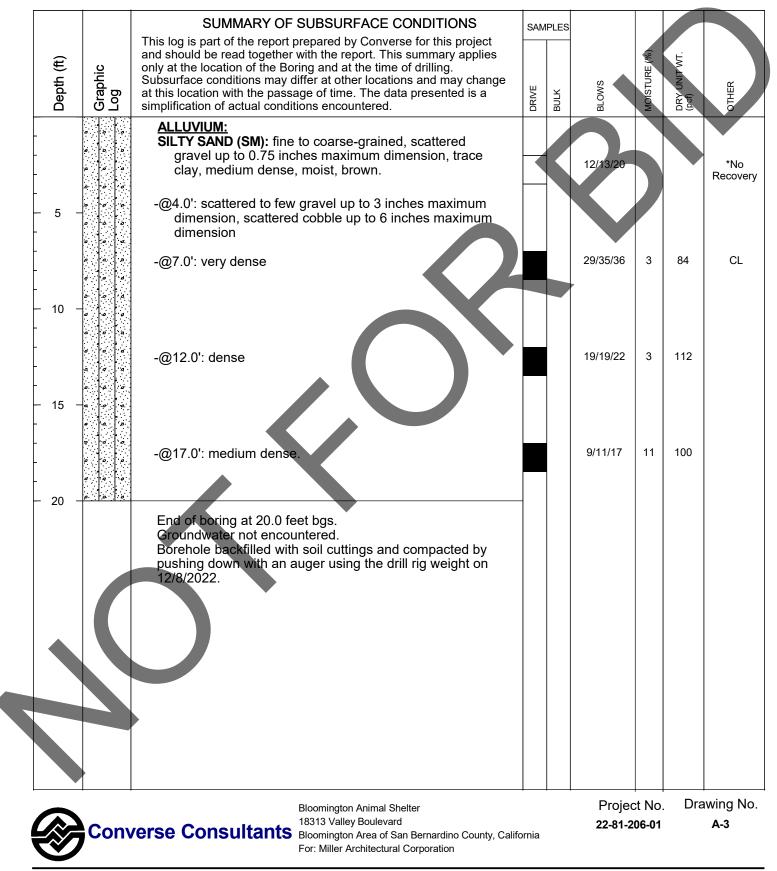
Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1115

		SUMMARY OF SUBSURFACE CONDITIONS	SAM	IPLES				
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the Boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	BULK	BLOWS	MOISTURE (%)	DRY UNIT WT. (pcf)	OTHER
-	a	ALLUVIUM: SILTY SAND (SM): fine to coarse-grained, scattered gravel up to 1.0 inches maximum dimension, trace clay, medium dense, moist, brown.			10/12/15	6	117	EI,R
- 5 -	000	-@3.5': scattered gravel up to 3 inches maximum dimension.			10/15/18	4	95	С
		End of boring at 5.0 feet bgs. Groundwater not encountered. Borehole backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight on 12/8/2022.			•			
	Con	Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, Califor For: Miller Architectural Corporation) ornia	Į	Projec 22-81-2		Dra	wing No. A-2

Date	Drilled:	
Date	Drineu.	

12/8/2022


Logged by: Stephen McPherson

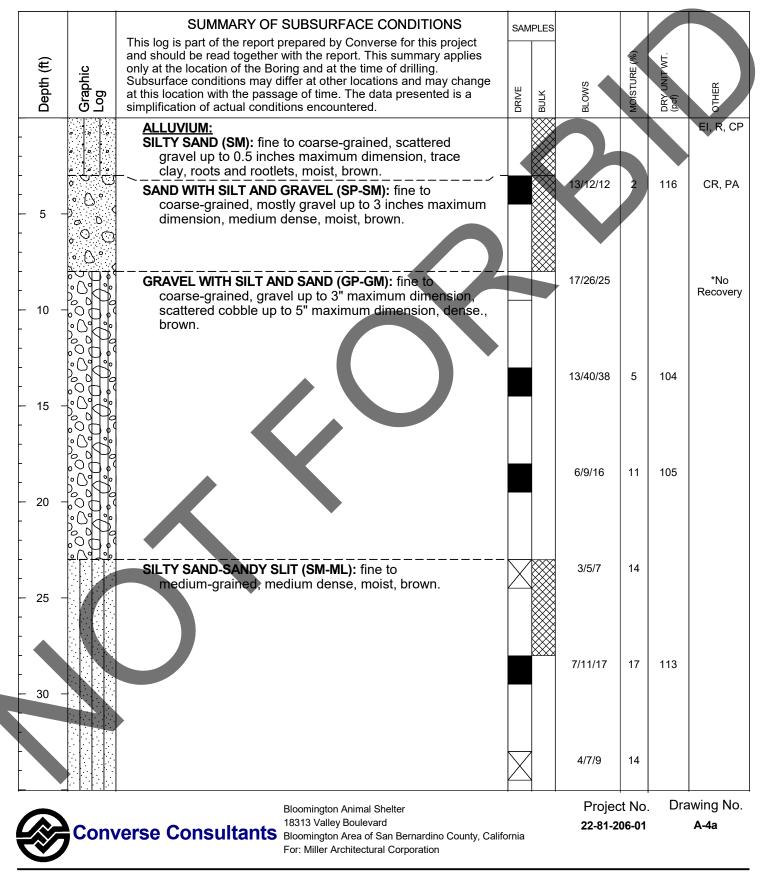
Checked By: Hashmi Quazi

Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1110

NOT ENCOUNTERED Depth to Water (ft, bgs):

12/8/2022


Logged by: Stephen McPherson

Checked By: Hashmi Quazi

Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1113

NOT ENCOUNTERED Depth to Water (ft, bgs):

		SUMMARY OF SUBSUR		SAM	PLES				
Depth (ft)	Graphic Log	This log is part of the report prepared b and should be read together with the re only at the location of the Boring and at Subsurface conditions may differ at oth at this location with the passage of time simplification of actual conditions encou	port. This summary applies t the time of drilling. ter locations and may change te. The data presented is a	DRIVE	BULK	BLOWS	MOISTURE (%)	DRY UNITWT. (pcf)	OTHER
		ALLUVIUM: SILTY SAND-SANDY SLIT (SM-N medium-grained, medium der	/IL): fine to nse, moist, brown.			2			
40 -		-@38.0': dense.				9/17/27	7	117	
45 –				$\left<$		9/14/20	6		
50 –		-@48.0': very dense.				12/35/48	5	116	
		End of boring at 50.0 feet bgs. Groundwater not encountered. Borehole backfilled with soil cutti pushing down with an auger usir 12/8/2022.	ings and compacted by ng the drill rig weight on						
		Diamiente	n Animal Shelter			Proje	L ct No	Dra	awing

_____ Logged by: <u>Stephen McPherson</u> Checked By:

ed By: Hashmi Quazi

Equipment: <u>8" DIAMETER HOLLOW STEM AUGER</u> Driving Weight and Drop: <u>140 lbs / 30 in</u>

Date Drilled:

12/8/2022

Date Drilled:	

12/8/2022

Logged by: Stephen McPherson

Hashmi Quazi Checked By:

Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1112

	· · · · · · · · · · · · · · · · · · ·							
		SUMMARY OF SUBSURFACE CONDITIONS	SAM	PLES				
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the Boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	BULK	SMOT	MOISTURE (%)	DRY UNITWT. (pcf)	OTHER
-	6 6 6 6	ALLUVIUM: SILTY SAND (SM): fine to coarse-grained, scattered gravel up to 1 inches maximum dimension, trace clay, medium dense, moist, brown.			>			
- - 5 - - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-@4.0': few to little gravel up to 3 inches maximum dimension, scattered cobble up to 5 inches maximum dimension			11/13/14	4	94	С
- - 10 - - -		-@9.0': dense.			22/21/18	2	118	
- - 15 -	a	-@14.0': medium dense.			7/10/15	7	106	
-		 SAND (SP): fine to medium-grained, trace clay, medium dense, moist, brown. -@19.0': very dense. 			42/50-6"	4		*disturbed
- 20 -		End of boring at 20.0 feet bgs. Groundwater not encountered. Borehole backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight on 12/8/2022.						
	Conv	Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, Califor For: Miller Architectural Corporation	ornia	<u> </u>	Projec 22-81-2		. Dra	wing No. A-5

Date Drilled:

12/8/2022

Logged by: Stephen McPherson Checked By:

Hashmi Quazi

Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1115

			SUMMARY OF SUBSURFACE CONDITIONS	SAM	IPLES	5			
	Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the Boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	BULK	BLOWS	MOISTURE (%)	DRY UNITWT. (pcf)	OTHER
	5 -		 ALLUVIUM: SILTY SAND (SM): fine to coarse-grained, trace clay, roots and rootlets, medium dense, moist, brown. -@3.0': scattered to few gralel up to 3 inches maximum dimension, dense. -@6.0': mostly gravel up 2 inches maximum dimension. -@8.0': scattered gravel up to 0.75 inches maximum dimension, medium dense. End of boring at 10.0 feet bgs. Groundwater not encountered. Borehole backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight on 12/8/2022. 			4/8/13 21/31/28 8/8/9	2	83 98 103	DS
Ę	>	Conv	Verse Consultants Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, Califor For: Miller Architectural Corporation	ornia	Į	Projec 22-81-2		. Dra	wing No. A-6

Data	Durilladi
Date	Drilled:

12/8/2022

Logged by: Stephen McPherson

Hashmi Quazi Checked By:

Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1111

		SUMMARY OF SUBSURFACE CONDITIONS	SAN	IPLES				
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the Boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	BULK	BLOWS	MOISTURE (%)	DRY UNITWT.	OTHER
-		ALLUVIUM: SILTY SAND (SM): fine to coarse-grained, trace clay, roots and rootlets, dense, moist, brown.						
-	e b b	-@2.0': scattered gravel up to 3 inches maximum dimension			9/24/33		107	CL
- 5 -	A 0 0							EI, PA
-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-@7.0': some gravel up to 3 inches maximum dimension, very dense.			21/36/28	2	115	
- 10 - - -		-@12.0': dense.			21/27/31	1	117	
- - 15 - - -								
20 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-@17.0': medium dense.			11/8/16	6	112	
20		End of boring at 20.0 feet bgs. Groundwater not encountered. Borehole backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight on 12/8/2022.						
	Conv	Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, Califor For: Miller Architectural Corporation	ornia		Projec 22-81-2		. Dra	awing No. A-7

Date Drilled:

12/8/2022

Logged by: Stephen McPherson Checked By:

Hashmi Quazi

Equipment: 8" DIAMETER HOLLOW STEM AUGER Driving Weight and Drop: 140 lbs / 30 in

Ground Surface Elevation (ft): 1112

		SUMMARY OF SUBSURFACE CONDITIONS	SAM	PLES				
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the Boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	BULK	SMOT	MOISTURE (%)	DRY UNITWT. (pcf)	OTHER
- - - - - -		ALLUVIUM: SILTY SAND (SM): fine to coarse-grained, trace clay, dense, moist, dark brown. little gravel up to 2.5 inches maximum dimension, roots and rootlets,.			8/26/28	2	98	EI, CR, CP
- - - 10 -	a a g	-@8.0': medium dense. -@10.0': dense.			7/12/13	4	115 135	
		End of boring at 11.5 feet bgs. Groundwater not encountered. Borehole backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight on 12/8/2022.						
	Conv	Verse Consultants Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, Califor For: Miller Architectural Corporation	l ornia	<u> </u>	Projec 22-81-2		Dra	wing No. A-8

round	Surface	e Elevation (ft): 1108 Depth to Water (ft, bgs): NOT ENCC	OUNTERED	_
Depth (ft)	Graphic Log	SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the Boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	BLOWS MOISTURE (%)	DRY UNIT WT. (p.c) OTHER
		ALLUVIUM: SILTY SAND (SM): fine to coarse-grained, dense, moist, brown.	$\boldsymbol{\lambda}$	
5 –		-@4.0': trace clay,, roots and rootlets	4/18/20 4	117 CL,
10 –		-@9.0': medium dense.	4/6/9 6	91
15 –		-@14.0': caliche.	5/8/12 9	83
20 -			8/9/13 6	107
		End of boring at 20.5 feet bgs. Groundwater not encountered. Borehole backfilled with soil cuttings and compacted by pushing down with an auger using the drill rig weight on 12/8/2022.		
		Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California	Project No.	Drawing

For: Miller Architectural Corporation

Log of Boring No. BH-08

12/8/2022

Date Drilled:

Logged by: Stephen McPherson

Checked By:

Hashmi Quazi

Date Dr					Stephen McPh		_ Checked By	: Ha	shmi Qua
		DIAMETER HOLL			g Weight and D	·		-	
Ground	Surrace	Elevation (ft):	1101	Dep	th to Water (ft, b	ogs <u>): NC</u>		KED	
Depth (ft)	Graphic Log	This log is part of and should be rea only at the locatio	ad together with on of the Boring a itions may differ th the passage o	ared by Convers the report. This and at the time at other location of time. The dat	se for this project summary applies of drilling. ns and may chang	je	BULK BLOWS	MOISTURE (%)	OTHER
- - - - 5 -		ALLUVIUM: SILTY SAND gravel up moist, dar	(SM): fine to c to 3 inches ma k brown.	oarse-grained ximum dimen	, scattered sion, trace clay,		2		P/
		Groundwater Borehole fitte percolation te Upon comple removed and	at 5.0 feet bg not encounter d with perforat esting on 12/8/2 tion of percola borehole was ed on 12/9/202	ed. ed pipe, filter 2022. tion testing, p backfilled w <u>it</u>	ipe was				
				•					
	Conv	verse Consi	1001	nington Animal Sh 3 Valley Boulevard nington Area of Sa		California	Projec 22-81-2		Drawing A-10

Ground Surface E	12/8/2022		Stephen McPherso	n	Checked By:	Hashmi	Quaz
Cepth (ft)	B" DIAMETER HOLLOW ST		ng Weight and Drop:		N/A		
Depth (ft) Graphic Log	ace Elevation (ft): 1103	Dep	oth to Water (ft, bgs <u>):</u>	NOT	ENCOUNTEREI	<u> </u>	
Depth (ft) Graphic Log	SUMMARY (OF SUBSURFACE C	CONDITIONS	SAMPLE	s		
	This log is part of the report and should be read togeth only at the location of the Subsurface conditions ma at this location with the pa simplification of actual cor	her with the report. This Boring and at the time y differ at other locatio ssage of time. The dat	s summary applies of drilling. ons and may change	BULK		DRY UNITWT. (pel)	OTHER
10	ALLUVIUM: SILTY SAND (SM): fi up to 3" maximum brown.	ne to coarse-grained n dimension, trace cl			8		
	-@9.0': scattered to f dimension. End of boring at 10.0 Groundwater not end) feet bgs. countered.	$\mathbf{\cdot}$				
	Borehole fitted with p percolation testing of Upon completion of p removed and boreho and compacted on 1	n 12/8/2022. percolation testing, p le was backfilled wit	bipe was				
		Bloomington Animal Sh	altar		Project N		wing N

For: Miller Architectural Corporation

Log of Boring No. PT-02

APPENDIX B

LABORATORY TESTING PROGRAM

Tests were conducted in our laboratory on representative soil samples for the purpose of classification and evaluation of their physical properties and engineering characteristics. The amount and selection of tests were based on the geotechnical parameters required for this project. Test results are presented herein and on the Logs of Borings, in Appendix A, *Field Exploration*. The following is a summary of the various laboratory tests conducted for this project.

In-Situ Moisture Content and Dry Density

In-situ dry density and moisture content tests were performed in accordance with ASTM Standard D2216 and D2937 on relatively undisturbed ring samples to aid soils classification and to provide qualitative information on strength and compressibility characteristics of the site soils. For test results, see the Logs of Borings in Appendix A, *Field Exploration*.

Expansion Index

Four representative bulk samples were tested in accordance with ASTM Standard D4829 to evaluate the expansion potential of materials encountered at the site. The test results are presented in the following table.

Boring No.	Depth (feet)	Soil Description	Expansion Index	Expansion Potential
BH-01	0.0-5.0	Silty Sand (SM)	0	Very Low
BH-03	0.0-3.0	Silty Sand (SM)	0	Very Low
BH-06	2.0-7.0	Silty Sand (SM)	0	Very Low
BH-07	0.0-2.0	Silty Sand (SM)	0	Very Low

Table No. B-1, Expansion Index Test Results

R-value

Two representative bulk soil samples were tested in accordance with California Test Method CT301 for resistance value (R-value). The test provides a relative measure of soil strength for use in pavement design. The test results are presented in the following table.

Table No. B-2, R-Value Test Result

Boring No.	Depth (feet)	Soil Classification	Measured R-value
BH-01*	0.0-5.0	Silty Sand (SM)	81
BH-03*	0.0-3.0	Silty Sand (SM)	74

* Since the R-Values were slightly higher than usual range of R-Value for similar soil type, a design R-Value of 50 was used.

M:\JOBFILE\2022\81\22-81-206 Miller Architects, Bloomington Animal Shelter \Report\22-81-206_GIR(01)parks

Soil Corrosivity

Two representative soil samples were tested in accordance with Caltrans Test Methods 643, 422 and 417 to determine minimum electrical resistivity, pH, and chemical content, including soluble sulfate and chloride concentrations. The purpose of these tests was to determine the corrosion potential of site soils when placed in contact with common construction materials. The tests were performed by AP Engineering and Testing, Inc. (Pomona, CA). Test results are presented in the following table.

	Table No. D-5, Summary of Son Contosivity Test Results											
	Boring No.	Depth (feet)	рН	Soluble Sulfates (CA 417) (ppm)	Soluble Chlorides (CA 422) (ppm)	Min. Resistivity (CA 643) (Ohm-cm)						
	BH-03	3.0-8.0	8.0	187	18	3,989						
	BH-07	0.0-2.0	8.1	16	17	33,110						
_				-								

Table No. B-3, Summary of Soil Corrosivity Test Results

<u>Collapse</u>

To evaluate the moisture sensitivity (collapse/swell potential) of the encountered soils, three collapse tests were performed in accordance with the ASTM Standard D4546 laboratory procedure. The samples were loaded to approximately 2 kips per square foot (ksf), allowed to stabilize under load, and then submerged. The test results are presented in the following table.

Table No. B-4, Collapse Test Results

Boring No.	Depth (feet)	Soil Classification	Percent Swell (+) Percent Collapse (-)	Collapse Potential
BH-02	7.0-8.5	Silty Sand (SM)	-0.6	Slight
BH-06	2.0-3.5	Silty Sand (SM)	-0.6	Slight
BH-08	4.0-5.5	Silty Sand (SM)	-1.5	Slight

Grain-Size Analyses

To assist in soil classification, mechanical grain-size analyses were performed on four select samples in accordance with the ASTM Standard D6913. Grain-size curves are shown in Drawing No. B-1, *Grain Size Distribution Results*.

Boring No./Report	Depth (ft)	Soil Classification	% Gravel	% Sand	%Silt %Clay	
BH-03	3.0-8.0	Sand with Silt and Gravel (SP-SM)	39.0	49.7	11.3	
BH-06	2.0-7.0	Silty Sand (SM)	13.0	54.1	32.9	
BH-08	4.0-9.0	Silty Sand (SM)	6.0	57.6	36.4	•
PT-01	0.0-5.0	Silty Sand (SM)	8.0	67.9	24.1	

Table No. B-5, Grain Size Distribution Test Results

Maximum Dry Density and Optimum Moisture Content

Laboratory maximum dry density-optimum moisture content relationship tests were performed on two representative bulk samples in accordance with the ASTM Standard D1557. The test results are presented in Drawing No. B-2, *Summary of Moisture-Density Relationship Results*, and are summarized in the following table.

Table No B-6, Summary of Moisture-Density Relationship Results

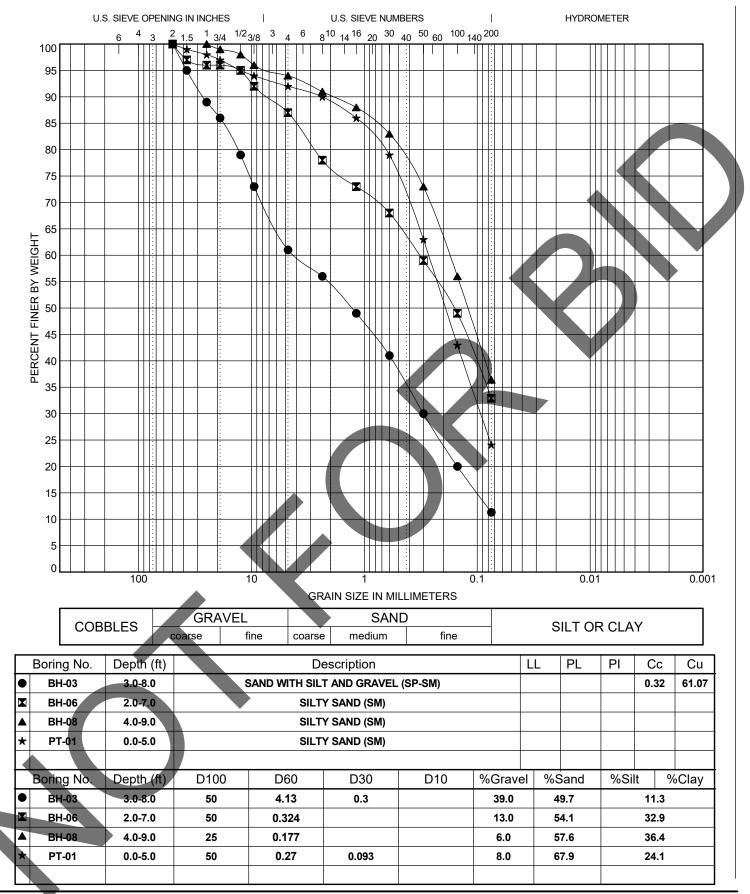
Boring No.	Depth (feet)	Soil Description	Optimum Moisture (%)	Maximum Density (lb/cft)
BH-03	0.0-3.0	Silty Sand (SM), Brown	10.5	118.2
BH-07	0.0-2.0	Silty Sand (SM), Brown	8.3	121.0

Direct Shear

One direct shear test was performed in accordance with ASTM Standard D3080 on relatively undisturbed samples in soaked moisture condition. One direct shear test was performed in accordance with ASTM Standard D3080 on remolded samples in soaked moisture condition. For each test, three samples contained in brass sampler rings were placed, one at a time, directly into the test apparatus and subjected to a range of normal loads appropriate for the anticipated conditions. The samples were then sheared at a constant strain rate of 0.02 inch/minute. Shear deformation was recorded until a maximum of about 0.25-inch shear displacement was achieved. Ultimate strength was selected from the shear-stress deformation data and plotted to determine the shear strength parameters. For test data, including sample density and moisture content, see Drawings No. B-3 and B-4, *Summary of Direct Shear Test Results*, and the following table.

Boring	Depth		Peak Strength Parameters						
No.	(feet)	Soil Description	Friction Angle (degrees)	Cohesion (psf)					
BH-05	8.0-9.5	Silty Sand (SM)	28	70					
*BH-08	4.0-5.5	Silty Sand (SM)	30	160					

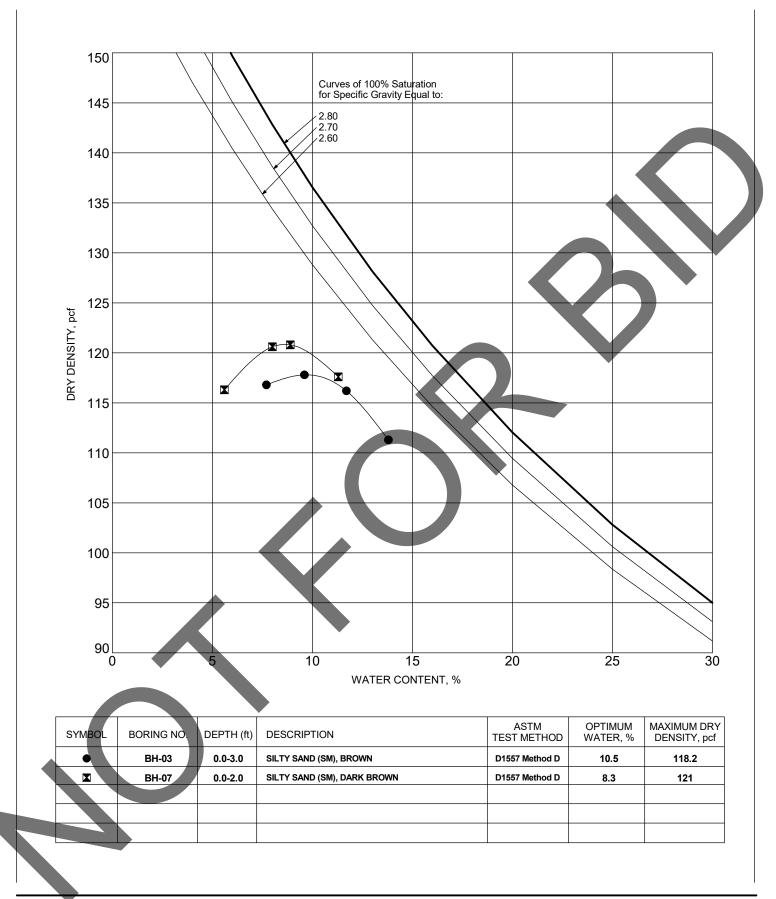
Table No. B-7. Summary of Direct Shear Test Results


Consolidation

Two consolidation tests were conducted in accordance with ASTM Standard D2435 method. Data obtained from the test performed on one relatively undisturbed ring sample was used to evaluate the settlement characteristics of the on-site soils under load. Preparation for the test involved trimming the sample, placing it in a 1-inch-high brass ring, and loading it into the test apparatus, which contained porous stones to accommodate drainage during testing. Normal axial loads were applied to one end of the sample through the porous stones, and the resulting deflections were recorded at various time periods. The load was increased after the sample reached a reasonable state of equilibrium. Normal loads were applied at a constant load-increment ratio, successive loads being generally twice the preceding load. For test results, including sample density and moisture content, see Drawing Nos. B-5 and B-6, Consolidation Test Results.

Sample Storage

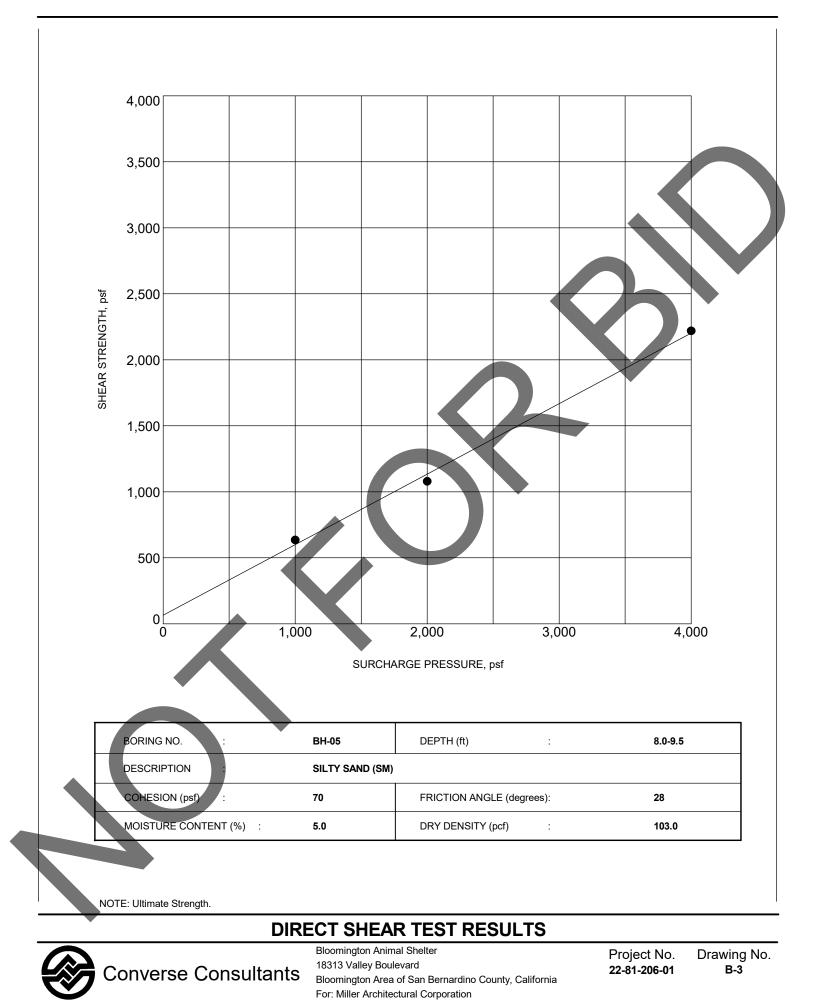
Soil samples presently stored in our laboratory will be discarded 30 days after the date of this report, unless this office receives a specific request to retain the samples for a longer period.


GRAIN SIZE DISTRIBUTION RESULTS

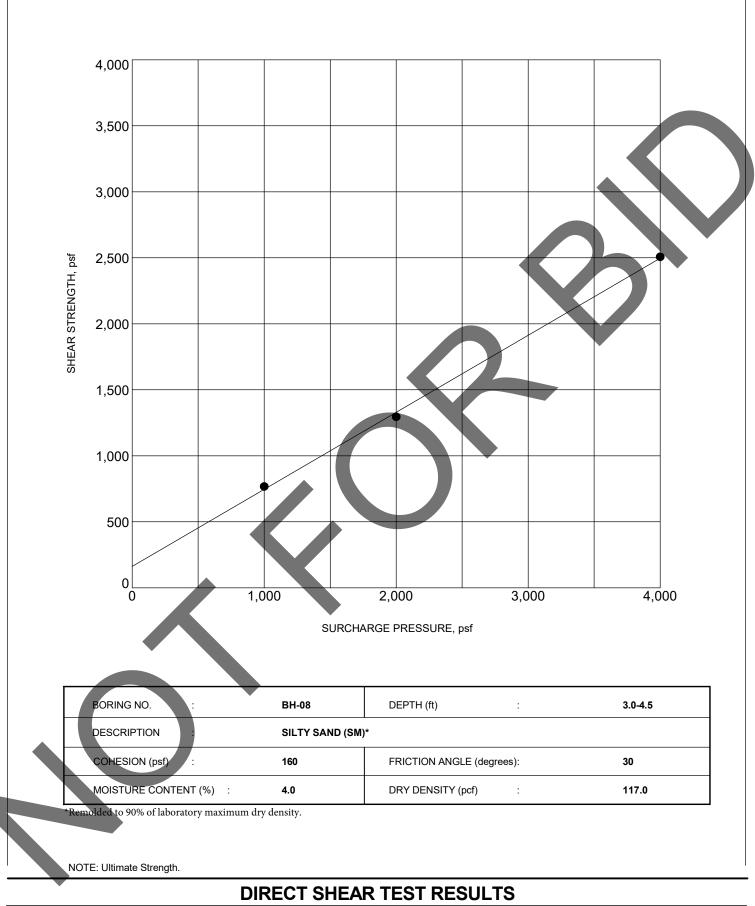
Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation Project No. Dr. 22-81-206-01

Drawing No. B-1

Project ID: 22-81-206-01.GPJ; Template: GRAIN SIZE



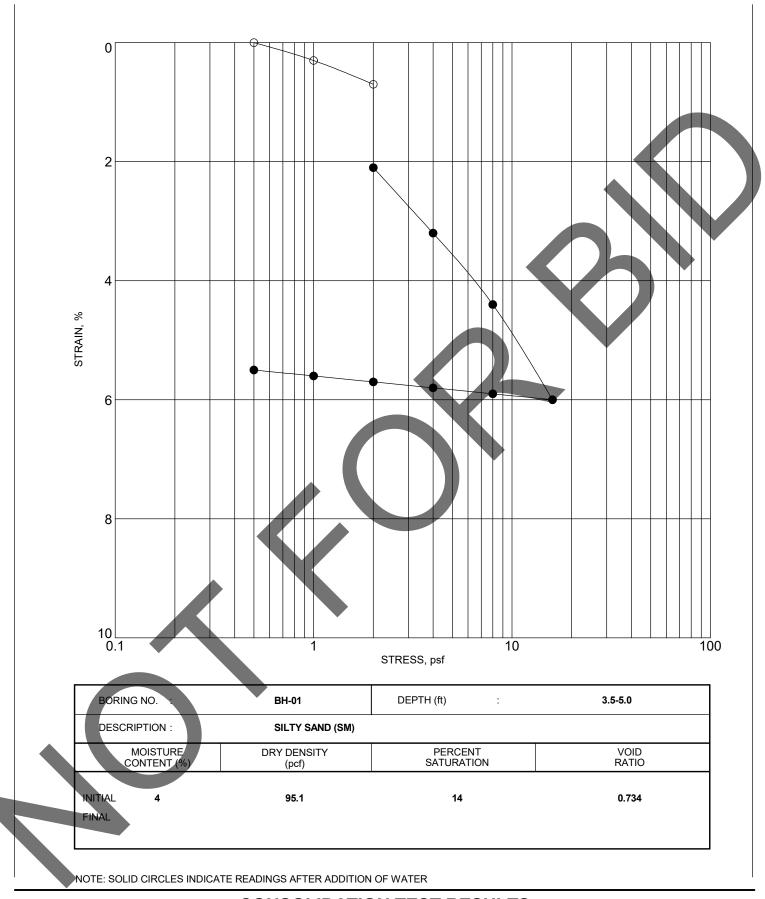
MOISTURE-DENSITY RELATIONSHIP RESULTS



Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation Project No. 22-81-206-01

Drawing No. **B-2**

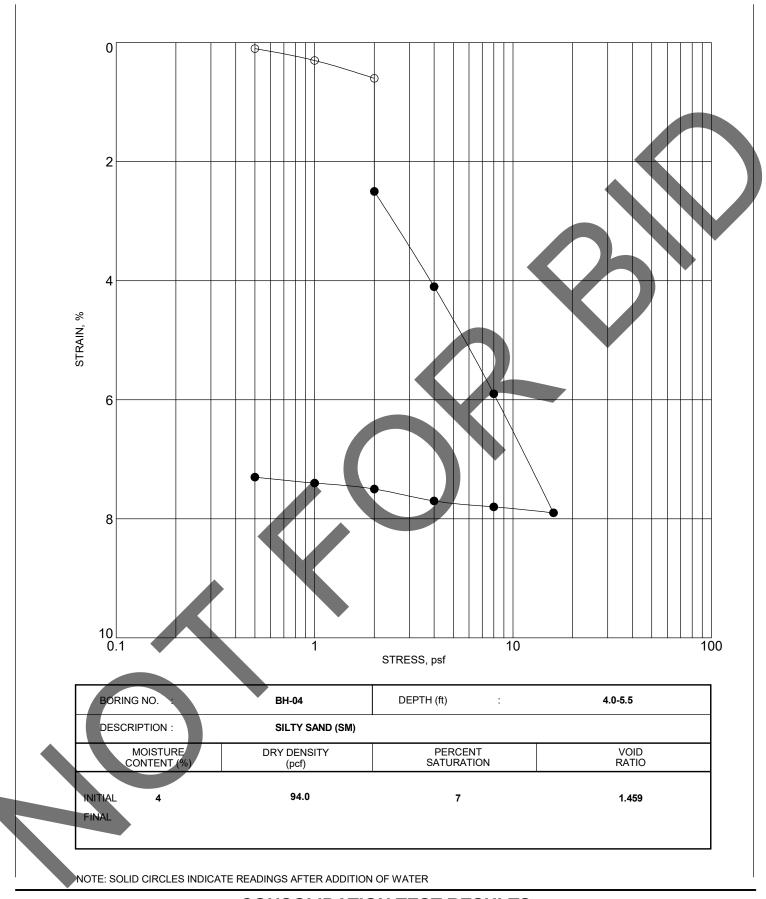
Project ID: 22-81-206-01.GPJ; Template: DIRECT SHEAR



Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation

Project No. Drawing No. 22-81-206-01

B-4



CONSOLIDATION TEST RESULTS

Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation Project No. **22-81-206-01**

Drawing No. B-5


CONSOLIDATION TEST RESULTS

Bloomington Animal Shelter 18313 Valley Boulevard Bloomington Area of San Bernardino County, California For: Miller Architectural Corporation

Drawing No. Project No. 22-81-206-01

B-6

APPENDIX C

LIQUEFACTION AND SETTLEMENT ANALYSIS

The subsurface data obtained from the boring BH-03 was used to evaluate the liquefaction potential and associated dry seismic settlement when subjected to ground shaking during earthquakes.

A simplified liquefaction hazard analysis was performed using the program SPTLIQ (InfraGEO Software, 2021) using the liquefaction triggering analysis method by Boulanger and Idriss (2014). A modal earthquake magnitude of M 8.1 was selected for the site based on the results of seismic disaggregation analysis using the USGS interactive online tool (https://earthquake.usgs.gov/hazards/interactive/).

A peak ground acceleration (PGA_M) of 0.727g for the MCE design event, where g is the acceleration due to gravity, was selected for this analysis. The PGA was based on the 2022 CBC seismic design parameters presented in Section 7.2, *CBC Seismic Design Parameters*.


The results of our analyses are presented on Plates of Appendix C and summarized in the following table.

Table No. C-1, Estimated Dynamic Settlements

Location	Groundwater	Groundwater	Dry Seismic	Liquefaction Induced
	Current Depth	Historical Depth	Settlement	Settlement
	(feet bgs)	(feet bgs)	(inches)	(inches)
BH-03	> 50.0	>50.0	1.44	Negligible

Based on our analysis, we anticipate the site has the potential for up to 1.44 inches of dry seismic settlement. The differential settlement resulting from dynamic loads is anticipated to be 0.72 inches over a horizontal distance of 40 feet. The structural engineer should consider this in the design.

SIMPLIFIED LIQUEFACTION HAZARDS ASSESSMENT USING STANDARD PENETRATION TEST (SPT) DATA

(Copyright © 2	(Copyright © 2015, 2021, SPTLIQ, All Rights Reserved; By: InfraGEO Software)										
PROJECT I	NFORMATION		1								
Project Name			Bloomington Animal S	Shelter							
Project No.			22-81-206-01								
Project Locatio	n		18313 Valley Boulevan	rd, Bloomington Area of	San Bernardino County	, California					
Analyzed By			Sk Syfur Rahman								
Reviewed By			Hashmi S. Quazi								
SELECTED	METHODS OF A	NALYSIS									
Analysis Descri	iption										
Triggering of L	iquefaction		Boulanger-Idriss (2014	4)							
Severity of Liqu	uefaction		LPI: Liquefaction Pot	ential Index based on Iw	asaki et al. (1978)						
Seismic Compre	ession Settlement (Dry/	Unsaturated Soil)	Pradel (1998)								
Liquefaction-In	duced Settlement (Satu	ırated Soil)	Ishihara and Yoshimi	ne (1992)							
Liquefaction-In	duced Lateral Spreadi	ng	Zhang et al. (2004)								
	Strength of Liquefied S		Idriss and Boulanger ((2008)							
	0 X			· · ·							
SEISMIC DE	SIGN PARAMET	TERS									
-	oment Magnitude, M _w		8.10								
	cceleration, A _{max}		0.73								
Factor of Safety	y Against Liquefaction,	FS	1.20								
BORING	TA AND SITE C	ONDITIONS	1								
Boring No.	In the SITE C	0.001110100	BH-03								
Ground Surface	e Elevation		1,113.00								
Proposed Grad			1,113.00								
-	easured During Test		50.00								
GWL Depth Us			50.00								
Borehole Diame	8			inches							
Hammer Weigh			140.00 pounds								
Hammer Drop			30.00 inches								
	y Efficiency Ratio, ER	(%)	80.00								
-	nce to Ground Surface	(,,)	5.00		•						
Topographic Si				(Level Ground with Near	rby Free Face)						
- Ground Slop			1505	<= Leave this blank							
-	istance to Slope Height	Ratio. (L/H)	5.00 <<= Enter (L/H) Enter H =>> 15.00 feet								
			INPUT SOIL PROFILE DATA								
Depth to	Depth to	Material Type	Liquefaction	Total Soil	Type of	Field	Fines				
Top of	Bottom of		Screening	Unit Weight	Soil	Blow Count	Content				
Soil Layer	Soil Layer			γ _t	Sampler						
(feet)	(feat)				~~ P	N _{field}	FC				
	(feet)	USCS Group Symbol	Susceptible Soil?	(pcf)	~~~~₽	¹ ¶field (blows/ft)	FC (%)				
0.00		(ASTM D2487)	(Y, N)	(pcf)		(blows/ft)	(%)				
2.50	2.50	(ASTM D2487) SM		(pcf) 118.0	MCal	(blows/ft) 24.00	(%) 11.00				
2.50	2.50 5.00	(ASTM D2487) SM SP-SM	(¥, N) ¥	(pcf) 118.0 118.0	MCal MCal	(blows/ft) 24.00 24.00	(%) <u>11.00</u> 11.00				
5.00	2.50 5.00 10.00	(ASTM D2487) SM SP-SM SP-SM	(Y, N) Y Y Y	(pcf) 118.0 118.0 118.0	MCal MCal MCal	(blows/ft) 24.00 24.00 51.00	(%) 11.00 11.00 11.00				
5.00 10.00	2.50 5.00 10.00 15.00	(ASTM D2487) SM SP-SM SP-SM SP-SM	(Y, N) Y Y Y Y	(pcf) 118.0 118.0 118.0 109.0	MCal MCal MCal MCal	(blows/ft) 24.00 24.00 51.00 78.00	(%) 11.00 11.00 11.00 10.00				
5.00 10.00 15.00	2.50 5.00 10.00 15.00 20.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM	(X, N) Y Y Y Y Y	(pcf) 118.0 118.0 118.0 109.0 117.0	MCal MCal MCal MCal MCal	(blows/ft) 24.00 24.00 51.00 78.00 25.00	(%) 11.00 11.00 11.00 10.00 10.00				
5.00 10.00 15.00 20.00	2.50 5.00 10.00 15.00 20.00 25.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM	(X, N) Y Y Y Y Y Y	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0	MCal MCal MCal MCal MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00	2.50 5.00 10.00 15.00 20.00 25.00 30.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SM	(X, N) Y Y Y Y Y Y Y	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0	MCal MCal MCal MCal MCal SPT1 MCal	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00	2.50 5.00 10.00 15.00 20.00 25.00 30.00 35.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM	(X, N) Y Y Y Y Y Y N	(pcf) 118.0 118.0 109.0 117.0 117.0 132.0 132.0	MCal MCal MCal MCal MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N	(pcf) 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N	(pcf) 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00	2.50 5.00 10.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SM SM SM	(X, N) Y Y Y Y Y Y N N N	(pcf) 118.0 118.0 118.0 109.0 117.0 117.0 132.0 132.0 125.0 125.0	MCal MCal MCal MCal SPT1 MCal SPT1 MCal SPT1	(blows/ft) 24.00 24.00 51.00 78.00 25.00 12.00 28.00 16.00 44.00 34.00	<pre>(%) 11.00 11.00 11.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</pre>				

SIMPLIFIED LIQUEFACTION HAZARDS ASSESSMENT USING STANDARD PENETRATION TEST (SPT) DATA

Indication Matchini Me			, SPTLIQ, All Rights Res			5 ASSE	6551 11 21 (1 0511	USIA	(D/III)	DIL			1201		, DAI													
<form>We way way way way way way way way way way</form>	PROJECT	I INFORMA	TION	1					SL	MMARV	OF RESU	LTS	1																
Note: International problem internatinternational problem international problem internationa				Bloomington A	nimal Shelter						or nese																		I
Image: Set to a set				-					Severit	y of Liave	faction:																		
Amplicity					oulevard, Bloo	omington Area	of San Bernard	lino County, O				Soils:	0.00) feet (cum	ulative total	thickness ir	n the upper 6	5 feet)											
Bandward Bandward <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,,</td><td>41</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>efaction)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								,,	41										efaction)										
Surgency series with a series with		-							Enquein	cuon roten			0.00	, (,	<i>, 1011</i> 11311, 11	iui no su u	ee mannesaa	cion or inque	ciaction)										
Band Band Band Band Band Band Band B		,							Seismic	Ground S	Settlement	·		Analysi	is Method		Unne	r 30 feet	Unner	50 feet	Unner (5 feet			-				
Link y land w land	SEISMIC	DESIGN PA	RAMETERS	Т																			Dry/Unsati	urated Soils)	-				
Nak Series Algebra Object Series Algebra<				8 1(1								Iehi			002)													
Image: Province of the provi														mara and 1	osininine (1	<i>))</i> 2)							(Saturated c	ions)					
New Year					-				Total 3	eisinie seur	ement.						1.44	menes	1.44	nicites	1,44	nicites							
Image: And the series and t	Factor of	Safety Agains	r Esqueraction, FS	1.20)				6.1	T				4			P			TO 5. 11	T.	-			-				
<tb> Imparize Imparize<</tb>	BOBBIO			Т								nts:				00)									-				
Conside Strategy File File Notes and participant of the part of			SITE CONDITIONS	DI									10			(98)						1	-						
 Parameter Low Low Low Low Low Low Low Low Low Low	-								Lateral	Spreading	Displaceme	nt:		Zhang ei	t al. (2004)		0.00	inches	0.00	inches	0.00	inches	After Grou	ind Snaking)					I
CML Dysk Userser Single Contraction Single Con										-																			
<tb> CML best with the second se</tb>									NO	TES AND	REFERE	NCES																	T
In the interference of																		1.4	54 P	1 10				AL)		N 0 -	0.0.0		
 Hame VegIt - Image VegIt - Ima		-	sign																							N _{field} C _N C _E	$C_B C_R C_S$		
Hamer je no je															soil layers	assessed to	be non-lique	tiable based	d on laborato	ry test results	using the c	riteria propos	sed by Ceti	n and Seed (20	03),				
Image: Property in the series of the ser		-			-																								
Hame bino decomponent in the series of t									-															und),					
Image: Property and property andiffication property and property and property									4 1																				
· Orward Slope S NA · · · · · · · · · · · · · · · · · · ·																post-earthq	uake, normal	ized and fin	nes-corrected	SPT blow con	unt derived	by Idriss and	d Boulange	r (2008).					
- Pree Face (L1) Ratio 5:0 H = 15 feet + Reference: Boulgarge, R.W. and Ldiss, M. (2014). "CPT and SEE Based LiquedRation tragging Presedures." University of California Data Scaling Data Scal			ition:			d with Nearby Fi	ree Face)		*** Bas	ed on Iwasa	iki et al. (19	78) and Top	orak and Ho	olzer (2003)														
Image: brance																													ļ
phene basics spring s	- Free	Face (L/H) Ra	tio	5.00)	H =	= 15 feet		+ Referen	nce: Boulan	iger, R.W. a	nd Idriss, I.I	M. (2014),	"CPT and	SPT Based	Liquefactio	n Triggering	Procedures	s," University	of California	Davis, Cen	ter for Geote	echnical M	odeling Report	No. UCD/C	CGM-14/01,	1-134.		
phene basics spring s			INPL	T SOLL PROFI	LEDATA				1		LIO	UFFACTO	ON TRIC	CEDINC	-ANAL VS	C PASED	ONPW		TED AND I	M IDDISS	(2014) ME	THOD +			Residual	Seismic	Cumulative	Cumulative	Cumulat
Bailange Bailang	Denth to	Denth to				Type of	Field	Fines	Total	Effective			SPT			Corrected	Normalized						Factor of	Liquefaction					Latera
Image Strest (AST)	Top of		stateriar rype						Vert.	Vert.			Corr.	Corr.	Corr.	SPT Blow	SPT Blow		Stress	for High					Strength		Settlement		Spreadin
Image from the proper biase Support of the proper biase <t< td=""><td>oil Layer</td><td></td><td></td><td>Screening</td><td></td><td>Sampler</td><td></td><td></td><td></td><td></td><td></td><td></td><td>for</td><td></td><td></td><td>Count</td><td>Count</td><td>SPT Blow</td><td></td><td></td><td>Ratio</td><td>Ratio</td><td></td><td></td><td>**</td><td>Ratio</td><td></td><td>Displacement</td><td>Displacem</td></t<>	oil Layer			Screening		Sampler							for			Count	Count	SPT Blow			Ratio	Ratio			**	Ratio		Displacement	Displacem
net (ASTM D248) Soli? (V) n n N eff n N eff n N eff n N eff N									(Design)	(Design)			Size					Count	Coefficient	Stress			-						
(fec)					γ _t		Nfield	FC	σνο	σ'νο			CB			N ₆₀	(N1)60	(N1)60cs	r _d	Kg	CSR	CRR	FSlia		Sr	ru			
2.50 5.00 SP-SM Y 118.00 MCal 24.00 14.00 44.20 47.00 1.33 1.150 0.70 0.50 1.100 1.100 1.100 0.410 0.400 <td>(feet)</td> <td>(feet)</td> <td></td> <td></td> <td>(pcf)</td> <td></td> <td></td> <td>(%)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>(psf)</td> <td>(%)</td> <td>(inches)</td> <td>(inches)</td> <td>(inches)</td>	(feet)	(feet)			(pcf)			(%)							~					-					(psf)	(%)	(inches)	(inches)	(inches)
5.00 10.00 SP-SM Y 11.80 MCal 51.00 18.00 85.00 12.07 13.30 11.00 65.00	0.00	2.50	SM	Y	118.00	MCal	24.00	11.00	147.50	147.50	1.700	1.333	1.150	0.750	0.650	17.9	30.5	32.1	1.000	1.100	0.473						1.44	0.63	0.00
5.00 10.00 SP-SM Y 11.80 MCal 51.00 18.00 88.00 12.9 1.33 1.15 0.80 0.60 40.4 49.6 51.2 0.995 1.100 0.47 0	2.50	5.00	SP-SM	Y	118.00	MCal	24.00	11.00	442.50	442.50	1.700	1.333	1.150	0.750	0.650	17.9	30.5	32.1	1.000	1.100	0.473						1.39	0.60	0.00
100 1500 SP-SM Y 1090 Mcal 78.0 10.00 145.25 1.45.3 1.07 1.33 150 0.80 66.1 69.2 70.4 0.966 1.06 1.06 1.07 1.34 0.56 0.00 15.00 20.00 SP-SM Y 117.00 Mcal 25.00 10.00 2.01.00 2.01.00 2.02.00 0.80 1.50 0.50 2.37 2.36 2.47 0.96 0.990 0.46 Mcal Mcal 0.50 0.50 0.50 2.37 2.36 2.47 0.970 0.990 0.46 Mcal Mcal Mcal 0.50 0.50 0.50 2.37 2.36 2.37 2.36 2.47 0.970 0.990 0.46 Mcal Mcal Mcal 0.50 0.50 0.50 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.37 2.36	5.00			Y							1.219			0.800		40.7			0.995		0.470								0.00
15.0 20.0 SP-SM Y 117.0 MCal 25.00 20.07.0					-						1.047				0.650	66.1													
25.00 SP-SM Y 117.00 SPT1 12.00 10.00 26.05.0 6.81 1.130 1.150 0.90 1.55 1.55 0.900 0.455 0.900 0.456 0 0 0 0 0 0 0.00 0.00 0.00 25.00 30.00 SM Y 132.00 MCal 28.00 3.25.00 3.25.00 3.25.00 3.25.00 3.25.00 3.25.00 3.05.0 1.50 0.50 2.65.0 2.6 2.6 2.6 2.6 0.970 0.456 0.00					-		-				-	1.555		_	0.000														
25.00 30.00 SM Y 132.00 MCal 28.00 3.25.00 3.25.00 3.15.0 9.05 2.6.5 2.1.6 2.8.0 9.932 0.933 0.10 0.00 <td></td> <td>0.996</td> <td>1,555</td> <td>/</td> <td></td>											0.996	1,555	/																
35.00 SM N 132.00 SPT1 16.00 3.88.00 A A B D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>						-	-				0.881	1.333																	
40.0 SM N 125.0 MCal 44.00 4.527.0 4.527.0 A D	25.00					MCal					0.815	1.333	1.150	0.950	0.650	26.5	21.6	22.8		0.932									0.00
40.00 45.00 SM N 125.00 SPT1 34.00 10.00 5,152.50 5,152.50 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	30.00	35.00	SM	N	132.00	SPT1	16.00	10.00	3,885.00	3,885.00									0.939		0.444						0.00	0.00	0.00
	35.00	40.00	SM	Ν	125.00	MCal	44.00	10.00	4,527.50	4,527.50									0.925		0.437						0.00	0.00	0.00
500 5M N 1200 MCa 3300 600 570.00	40.00	45.00	SM	Ν	125.00	SPT1	34.00	10:00	5,152.50	5,152.50									0.909		0.430						0.00	0.00	0.00
	45.00	50.00	SM	Ν	122.00	MCal	83.00	10.00	5,770.00	5,770.00									0.894		0.422						0.00	0.00	0.00
									1																				
				<u> </u>																									

SIMPLIFIED LIQUEFACTION HAZARDS ASSESSMENT USING STANDARD PENETRATION TEST (SPT) DATA

(Copyright © 2015, 2021, SPTLIQ, All Rights Reserved; By: InfraGEO Software)

PROJECT INFORMATION	
Project Name	Bloomington Animal Shelter
Project No.	22-81-206-01
Project Location	18313 Valley Boulevard, Bloomington Area of San Bernardino County, California
Analyzed By	Sk Syfur Rahman
Reviewed By	Hashmi S. Quazi

REFERENCES:

1. Boulanger, R.W. and Idriss, I.M. (2014), "CPT and SPT Based Liquefaction Triggering Procedures," University of California Davis, Center for Geotechnical Modeling Report No. UCD/CGM-14/01, 1-134.

- 2. Bray, J.D., and Sancio, R.B. (2006). "Assessment of the liquefaction susceptibility of fine-grained soils," Journal of Geotech. and Geoenv. Engineering, ASCE 132 (9), 1165-1177.
- 3. Cetin, K.O. and Seed, R.B., et al. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential," Journal of Geotech. and Geoenv. Engineering, ASCE 130 (12), 1314-1340.
- 4. Idriss, I.M. and Boulanger, R.W. (2008), "Soil Liquefaction During Earthquakes", Earthquake Engineering Research Institute (EERI), Monograph MNO-12.
- 5. Ishihara, K. and Yoshimine, M. (1992), "Evaluation of settlements in sand deposits following liquefaction during earthquakes," Soils and Foundations, Japanese Geotechnical Society, 32 (1), 173-188.
- 6. Iwasaki, T., et al. (1978), "A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan," Proceedings Of 3rd International Conference of Microzonation, San Francisco, 885-896.
- 7. Olson, S.M. and Johnson, C.I. (2008), "Analyzing Liquefaction-Induced Lateral Spreads Using Strength Ratios," Journal of Geotech. and Geoten. Engineering, ASCE 134 (8), 1035-1049.
- 8. Pradel, D. (1998), "Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils," Journal of Geotechnical Engineering, ASCE 124 (4), pp. 364-368.
- 9. Seed, R.B. and Harder, L.F. (1990), "SPT-based analysis of eyelic porc pressure generation and undrained residual strength, Proceedings Of Seed Memorial Symposium, Vancouver, B.C., 351-376.
- 10. Tokimatsu, K. and Seed, H.B. (1987), "Evaluation of settlements in sands due to earthquake shaking," Journal of Geotechnical Engineering, ASCE 113 (GT8), 861-878.
- 11. Tokimatsu, K. and Asaka, Y. (1998), "Effects of liquefaction-induced ground displacementson pile performance in the 1995 Hyogoken-Nambu Earthquake," Soils and Foundations, Special Issue, Japan Geotechnical Society, 163-177.
- 12. Toprak, S. and Holzer, T.L. (2003), "Liquefaction Potential Index: Field Assessment," Journal of Geotechnical and Geoenvironmental Engineering, ASCE 129 (4), 315-322.
- 13. Youd, T.L, Idriss, I.M., et al. (2001), "Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops", Journal of Geotech. and Geotenv. Engineering, ASCE 127 (10), 817-833.
- 14. Zhang, G, Robertson, P.K. and Brachman, R.W.I. (2004), "Estimating liquefaction-induced lateral displacement using the standard penetration test or cone penetration test," Journal of Geotech. and Geoenv. Engineering, ASCE 130 (8), 861-871.

APPENDIX D

PERCOLATION TESTING

Percolation testing was performed at two locations (PT-01 and PT-02) on December 9, 2022, in general accordance with the San Bernardino County Technical Guidance Document for the Preparation of Conceptual/Preliminary and/or Project Water Quality Management Plans, Appendix VII, Infiltration Rate Evaluation Protocol and Factor of Safety Recommendations (San Bernardino County, 2013) for using a percolation testing method to estimate infiltration rates.

Upon completion of drilling the test holes, approximately 2-inch-thick gravel layer was placed at the bottom of each hole and a 3.0-inch diameter perforated pipe was installed above the gravel to the ground surface. The boring annulus around the pipe was filled with gravel. The purpose of the pipe and gravel was to reduce the potential for erosion and caving due to the addition of water to the hole.

Each test hole was presoaked by filling with water to at least 5 times the radius of the test hole. Percolation testing was conducted the day following presoaking. More than 6 inches of water seeped away from the test holes in less than 25 minutes for 2 consecutive measurements, meeting the criteria for testing as "sandy soil". During testing, the water level and total depth of the test hole were measured from the top of the pipe every 10 minutes for one hour. Following the completion of percolation testing, the pipe was removed from each test hole and the percolation test hole was backfilled with cutting soils and compacted.

Percolation rates describe the movement of water horizontally and downward into the soil from a boring. Infiltration rates describe the downward movement of water through a horizontal surface, such as the floor of a retention basin. Percolation rates are related to infiltration rates but are generally higher and require conversion before use in design. The percolation test data was used to estimate infiltration rates using the Porchet Inverse Borehole Method, in accordance with the San Bernardino County guidelines. A factor of safety of 2 was applied to the measured infiltration rates to account for subsurface variations, uncertainty in the test method, and future siltation. The infiltration structure designer should determine whether additional design-related safety factors are appropriate.

The measured percolation test data, calculations and estimated infiltration rates are shown on Plates No. 1 and 4. The estimated and design infiltration rates at the test holes are presented in the following table.

Percolation Test	Approx. Depth of Boring* (feet)	Predominant Soil Types (USCS)	Average Infiltration Rate (inches/hour) (FCS 2)									
PT-01	5.3	Silty Sand (SM)	1.82									
PT-02	10.2	Silty Sand (SM)	6.30									

Table D-1, Estimated Infiltration Rates

Based on the calculated infiltration rate during the final respective intervals in each test, a design infiltration rate of 1.82 and 6.30 (inches/hour) can be used for depth of 5 feet and 10 feet respectfully for selected percolation testing locations. Please note that infiltration rates may change if the soil type and location of the proposed system changes. If that is the case, then additional percolation testing should be performed in the required location.

Estimated Infiltration Rate from Percolation Test Data, PT-01

Project Name	Bloomington Animal Shelter
Project Number	22-81-206-01
Test Number	PT-01
Test Location	Southeast of site
Personnel	Stephen McPherson
Presoak Date	12/8/2022
Test Date	12/9/2022

Shaded cells contain calculated values.	
Test Hole Radius, r (inches)	4
Total Depth of Test hole, D _T (inches)	62.5
Inside Diameter of Pipe, I (inches)	2.88
Outside Diameter of Pipe, O (inches)	3.13
Factor of Safety (FOS), F	2

Interval No.	Time Interval, ∆t (min)	Initial Depth to Water, D ₀ (inches)	Final Depth to Water, D _f (inches)	Elapsed Time (min)		Final Height of Water, H _f (inches)		Average Head Height, H _{avg} (inches)	Infiltration Rate, I _t (inches/hr)	Infiltration Rate with FOS, I _f (inches/hr)
intervarite.	(11111)	(1101100)	(1101100)	0	(1101100)				(1101100/11)	 0
1	25.00	11.40	40.80	25.00	51.10	21.70	29,40	36.40	3.68	1.84
2	25.00	5.88	37.44	50.00	56.62	25.06	31.56	40.84	3.54	1.77
3	10.00	8.40	24.72	60.00	54.10	37.78	16.32	45.94	4.09	2.04
4	10.00	8.40	24.00	70.00	54.10	38.50	15.60	46.30	3.88	1.94
5	10.00	8.40	23.64	80.00	54.10	38.86	15.24	46.48	3.77	1.89
6	10.00	8.40	23.40	90.00	54.10	39.10	15.00	46.60	3.70	1.85
7	10.00	8.40	23.16	100.00	54.10	39.34	14.76	46.72	3.64	1.82
8	10.00	8.40	23.16	110.00	54.10	39.34	14.76	46.72	3.64	1.82

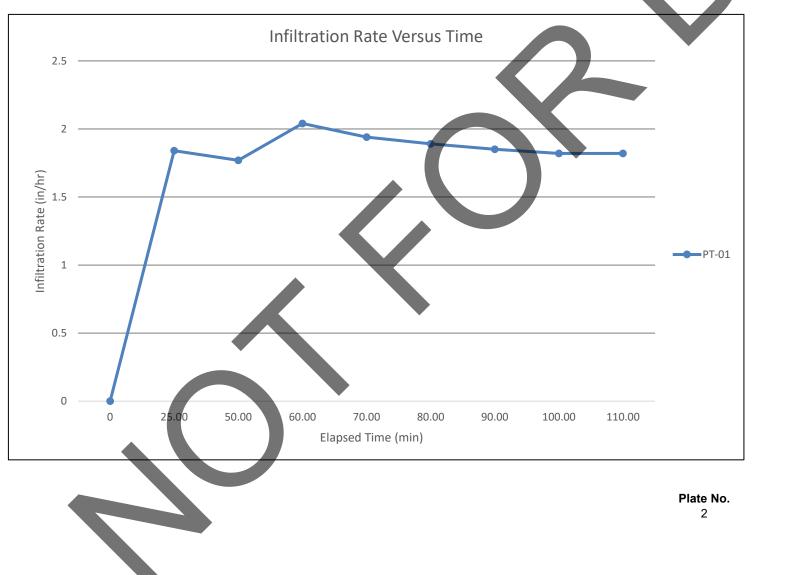
Recommended Design Infiltration Rate (inches/hr)

Infiltration calculations are based on the Porchet Inverse Borehole Method presented in Riverside County BMP Design Handbook, Appendix A, Infiltration Testing (Riverside County, 2011)

1.82

 $H_0 = D_T - D_0$

 $\Pi_0 = D_T = D_0$


 $\begin{aligned} \mathsf{H}_{\mathsf{f}} &= \mathsf{D}_{\mathsf{T}} - \mathsf{D}_{\mathsf{f}} \\ \Delta \mathsf{H} &= \mathsf{H}_{\mathsf{0}} - \mathsf{H}_{\mathsf{f}} \\ \mathsf{H}_{\mathsf{avg}} &= (\mathsf{H}_{\mathsf{0}} + \mathsf{H}_{\mathsf{f}}) \ / \ 2 \end{aligned}$

 $I_t = (\Delta H^* (60^* r)) / (\Delta t^* (r + (2^* H_{avg})))$

Plate No. 1

Infiltration Rate versus Time, PT-01

Project Name	Bloomington Animal Shelter
Project Number	22-81-206-01
Test Number	PT-01
Test Location	Southeast of site
Personnel	Stephen McPherson
Presoak Date	12/8/2022
Test Date	12/9/2022

Estimated Infiltration Rate from Percolation Test Data, PT-01

Project Name	Bloomington Animal Shelter			
Project Number	22-81-206-01			
Test Number	PT-02			
Test Location	Southwest of site			
Personnel	Stephen McPherson			
Presoak Date	12/8/2022			
Test Date	12/9/2022			

Shaded cells contain calculated values.					
Test Hole Radius, r (inches) 4					
Total Depth of Test hole, D _T (inches)	122.75				
Inside Diameter of Pipe, I (inches)	2.88				
Outside Diameter of Pipe, O (inches)	3.13				
Factor of Safety (FOS), F	2				

	Time Interval, ∆t	Initial Depth to Water, D ₀		Elapsed Time (min)		Final Height of Water, H _f		Average Head Height, H _{avg}	Infiltration Rate, I _t	Infiltration Rate with FOS, I _f
Interval No.	(min)	(inches)	(inches)		(inches)	(inches)	(inches)	(inches)	(inches/hr)	(inches/hr)
				0						0
1	25.00	12.00	120.60	25.00	110.75	2.15	108.60	56.45	8.92	4.46
2	25.00	14.76	118.44	50.00	107.99	4.31	103.68	56.15	8.56	4.28
3	10.00	15.60	97.80	60.00	107.15	24.95	82.20	66.05	14.50	7.25
4	10.00	13.92	94.92	70.00	108.83	27.83	81.00	68.33	13.82	6.91
5	10.00	18.00	94.20	80.00	104.75	28.55	76.20	66.65	13.32	6.66
6	10.00	12.60	91.68	90.00	110.15	31.07	79.08	70.61	13.07	6.53
7	10.00	16.80	91.68	100.00	105.95	31.07	74.88	68.51	12.74	6.37
8	10.00	14.40	90.36	110.00	108.35	32.39	75.96	70.37	12.60	6.30

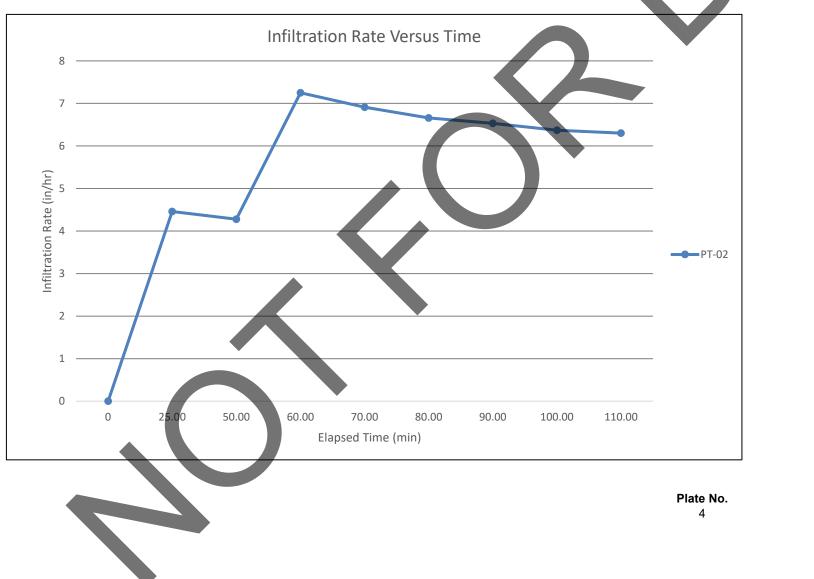
Recommended Design Infiltration Rate (inches/hr)

Infiltration calculations are based on the Porchet Inverse Borehole Method presented in Riverside County BMP Design Handbook, Appendix A, Infiltration Testing (Riverside County, 2011)

6.30

 $H_0 = D_T - D_0$

 $H_0 = D_T - D_0$ $H_f = D_T - D_f$


 $\Delta H = H_0 - H_f$ $H_{avg} = (H_0 + H_f) / 2$

 $I_t = (\Delta H^* (60^* r)) / (\Delta t^* (r + (2^* H_{avg})))$

Plate No. 3

Infiltration Rate versus Time, PT-01

Project Name	Bloomington Animal Shelter
Project Number	22-81-206-01
Test Number	PT-02
Test Location	Southwest of site
Personnel	Stephen McPherson
Presoak Date	12/8/2022
Test Date	12/9/2022

VII.4.1. <u>Site Suitability Considerations</u>

Suitability assessment related considerations include (Table VII.3):

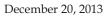
- Soil assessment methods the site assessment extent (e.g., number of borings, test pits, etc.) and the measurement method used to estimate the short-term infiltration rate.
- Predominant soil texture/percent fines soil texture and the percent of fines can
 greatly influence the potential for clogging.
- Site soil variability site with spatially heterogeneous soils (vertically or horizontally) as determined from site investigations are more difficult to estimate average properties for resulting in a higher level of uncertainty associated with initial estimates.
- Depth to seasonal high groundwater/impervious layer groundwater mounding may become an issue during excessively wet conditions where shallow aquifers or shallow clay lenses are present.

Table VII.3: Suitability Assessment Related Considerations for Infiltration Facility Safety Factors

Consideration	High Concern	Medium Concern	Low Concern
Assessment methods (see explanation below)	Use of soil survey maps or simple texture analysis to estimate short-term infiltration rates	Direct measurement of ≥ 20 percent of infiltration area with localized infiltration measurement methods (e.g., infiltrometer)	Direct measurement of ≥ 50 percent of infiltration area with localized infiltration measurement methods or Use of extensive test pit infiltration measurement methods
Texture Class	Silty and clayey soils with significant fines	Loamy soils	Granular to slightly loamy soils
Site soil variability	Highly variable soils indicated from site assessment or limited soil borings collected during site assessment	Soil borings/test pits indicate moderately homogeneous soils	Multiple soil borings/test pits indicate relatively homogeneous soils
Depth to groundwater/ impervious layer	<5 ft below facility bottom	5-10 ft below facility bottom	>10 below facility bottom

Localized infiltration testing refers to methods such as the double ring infiltrometer test (ASTM D3385-88) which measure infiltration rates over an area less than 10 sq-ft, may include lateral

flow, and do not attempt to account for heterogeneity of soil. The amount of area each test represents should be estimated depending on the observed heterogeneity of the soil.


Extensive infiltration testing refers to methods that include excavating a significant portion of the proposed infiltration area, filling the excavation with water, and monitoring drawdown. The excavation should be to the depth of the proposed infiltration surface and ideally be at least 50 to 100 square feet.

In all cases, testing should be conducted in the area of the proposed BMP where, based on review of available geotechnical data, soils appear least likely to support infiltration.

VII.4.2. Design Related Considerations

Design related considerations include (Table VII.4):

- Size of area tributary to facility all things being equal, risk factors related to infiltration facilities increase with an increase in the tributary area served. Therefore facilities serving larger tributary areas should use more restrictive adjustment factors.
- Level of pretreatment/expected influent sediment loads credit should be given for good pretreatment by allowing less restrictive factors to account for the reduced probability of clogging from high sediment loading. Also, facilities designed to capture runoff from relatively clean surfaces such as rooftops are likely to see low sediment loads and therefore should be allowed to apply less restrictive safety factors.
- Redundancy facilities that consist of multiple subsystems operating in parallel such that parts of the system remains functional when other parts fail and/or bypass should be rewarded for the built-in redundancy with less restrictive correction and safety factors. For example, if bypass flows would be at least partially treated in another BMP, the risk of discharging untreated runoff in the event of clogging the primary facility is reduced. A bioretention facility that overflows to a landscaped area is another example.
- Compaction during construction proper construction oversight is needed during construction to ensure that the bottoms of infiltration facility are not overly compacted. Facilities that do not commit to proper construction practices and oversight should have to use more restrictive correction and safety factors.

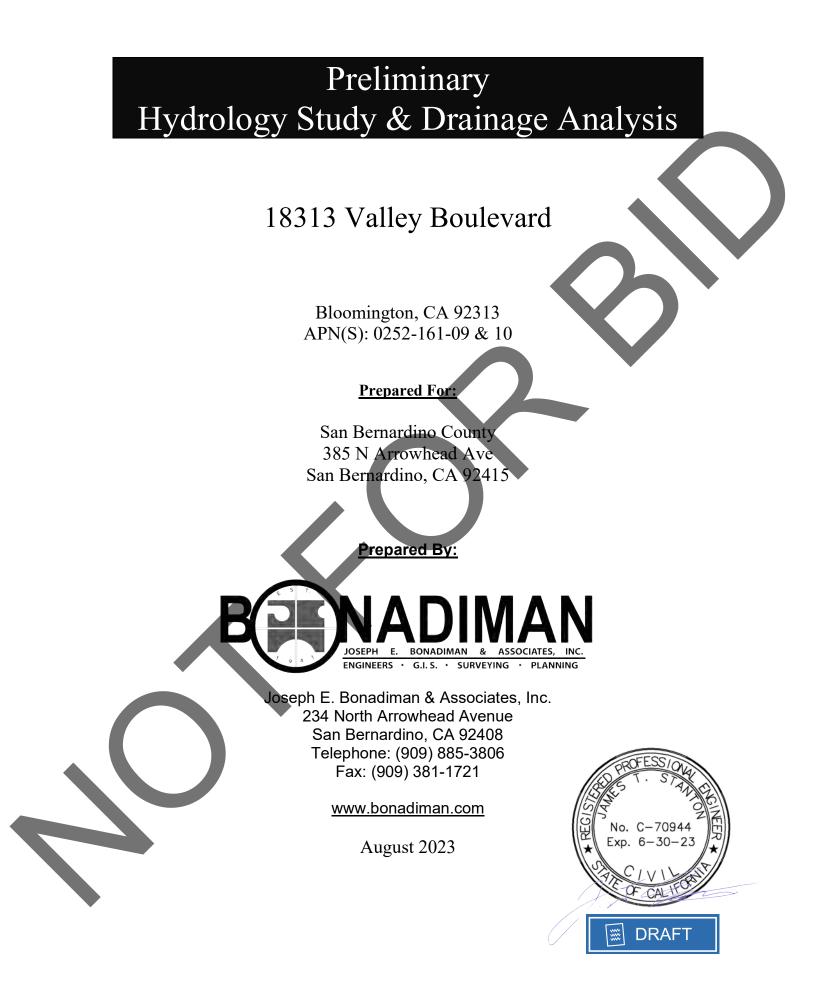
Consideration	High Concern	Medium Concern	Low Concern
Tributary area size	Greater than 10 acres.	Greater than 2 acres but less than 10 acres.	2 acres or less.
Level of pretreatment/ expected influent sediment loads	Pretreatment from gross solids removal devices only, such as hydrodynamic separators, racks and screens AND tributary area includes landscaped areas, steep slopes, high traffic areas, or any other areas expected to produce high sediment, trash, or debris loads.	Good pretreatment with BMPs that mitigate coarse sediments such as vegetated swales AND influent sediment loads from the tributary area are expected to be relatively low (e.g., low traffic, mild slopes, disconnected impervious areas, etc.).	Excellent pretreatment with BMPs that mitigate fine sediments such as bioretention or media filtration OR sedimentation or facility only treats runoff from relatively clean surfaces, such as rooftops.
Redundancy of treatment	No redundancy in BMP treatment train.	Medium redundancy, other BMPs available in treatment train to maintain at least 50% of function of facility in event of failure.	High redundancy, multiple components capable of operating independently and in parallel, maintaining at least 90% of facility functionality in event of failure.
Compaction during construction	Construction of facility on a compacted site or elevated probability of unintended/ indirect compaction.	Medium probability of unintended/ indirect compaction.	Heavy equipment actively prohibited from infiltration areas during construction and low probability of unintended/ indirect compaction.

Table VII.4: Design Related Considerations for Infiltration Facility Safety Factors

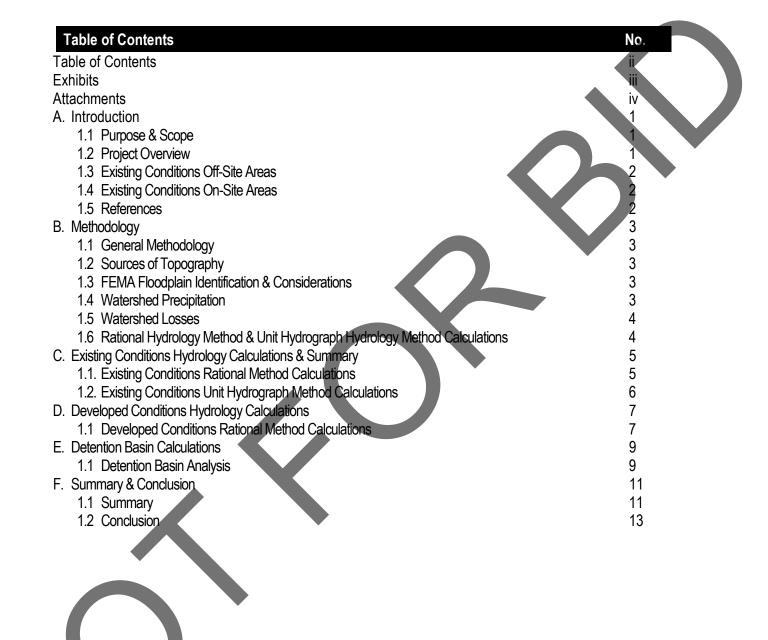
VII.4.3. Determining Factor of Safety

A factor of safety shall be used. To assist in selecting the appropriate design infiltration rate, the measured short term infiltration rate should be adjusted using a weighted average of several safety factors using the worksheet shown in **Worksheet H** below. The design infiltration rate would be determined as follows:

- 1. For each consideration shown in **Table VII.3** and **Table VII.4** above, determine whether the consideration is a high, medium, or low concern.
- 2. For all high concerns, assign a factor value of 3, for medium concerns, assign a factor value of 2, and for low concerns assign a factor value of 1.
- 3. Multiply each of the factors by the corresponding weight to get a product.
- 4. Sum the products within each factor category to obtain a safety factor for each.
- 5. Multiply the two safety factors together to get the final combined safety factor. If the combined safety factor is less than 2, then 2 shall be used as the safety factor
- 6. Divide the measured short term infiltration rate by the combined safety factor to obtain the adjusted design infiltration rate for use in sizing the infiltration facility.


The design infiltration rate shall be used to size BMPs and to evaluate their expected long term performance. This rate shall not be less than 2, but may be higher at the discretion of the design engineer.

Factor Category	Factor Description	Assigned Weight (w)	Factor Value (v)	Product (p) p = w x v
	Soil assessment methods	0.25		
	Predominant soil texture	0.25		
A Suitability	Site soil variability	0.25		
Assessment	Depth to groundwater / impervious layer	0.25		
	Suitability Assessment Safety Facto	or, $S_A = \Sigma p$		
	Tributary area size	0.25		
	Level of pretreatment/ expected sediment loads	0.25		
B Design	Redundancy	0.25		
	Compaction during construction	0.25		
	Design Safety Factor, $S_{B} = \Sigma p$			
Supporting Data	pecific bias) ate, in/hr, K _{DESIGN} = K _{Observed} / S _{Total} tration test and provide reference to test	st forms:		


Worksheet H: Factor of Safety and Design Infiltration Rate and Worksheet

Initial Study San Bernardino County PROJ-10.10.1319 San Bernardino County Animal Care Center Project APN: 0252-161-09-0000 and 0252-161-10-0000 May 2024

Table of Contents

Exhibits

Exhibit		No.
		NO.
Project Watershed – Aerial Photo Project Watershed – USGS Quadrangle		B
FEMA Floodplain Maps	4	C
San Bernardino County Hydrology Manual Isohyetal Maps		D
San Bernardino County Hydrology Manual Soils Maps		E
Existing Hydrologic Conditions Study Map		
Developed Hydrologic Conditions Study Map		G

Attachments

Attachments	No.
Existing Conditions Rational Method Calculations	1
2-Year, 1-Hour	
5-Year, 1-Hour	
10-Year, 1-Hour	
25-Year, 1-Hour	
100-Year, 1-Hour	
Existing Conditions Hydrograph Calculations	2
2-Year, 24-Hour	
5-Year, 24-Hour	
10-Year, 24-Hour	
25-Year, 24-Hour	
100-Year, 24-Hour	
Developed Conditions Rational Method Calculations	3
2-Year, 1-Hour	
10-Year, 1-Hour	
25-Year, 1-Hour	
100-Year, 1-Hour	
Developed Conditions Hydrograph Calculations	4
2-Year, 24-Hour	
10-Year, 24-Hour	
25-Year, 24-Hour	
100-Year, 24-Hour	
Basin Routing	5
2-Year, 24-Hour	
10-Year, 2 <mark>4-H</mark> our	
25-Year, 24-Hour	
100-Year, 24-Hour	

A. Introduction

1.1 Purpose & Scope

The following Hydrology & Hydraulics Study has been prepared for the development of 18313 Valley Boulevard. Located on two parcels on the south side of Valley Boulevard, between Linden Avenue and Locust Avenue, west of Cedar Avenue, on 6.07-acres in Bloomington, CA. This report has been prepared to satisfy San Bernardino County requirements per San Bernardino County Department of Public Works Hydrology/Hydraulics for developments of this type.

The scope of this Study is as follows:

- Identification of floodplain(s) impacting the site.
- Identification of existing conditions off-site tributary drainage.
- Identification of existing conditions on-site drainage areas and calculation of peak flow rates and runoff volumes for these areas.
- Identification of proposed on-site drainage areas and calculation of peak flow rates and runoff volumes for these areas.
- Identification of required storm water mitigation due to development.
- Sizing of on-site storm drain improvements.
- Summary of Findings & Conclusion

1.2 Project Overview

The project site is located on two parcels on the south side of Valley Boulevard, between Cedar Avenue and Locust Avenue, west of Cedar Avenue, on 6.07-acres in Bloomington, CA.

1.3 Existing Conditions Off-Site Areas

The project site is located in the "Valley Corridor/Bloomington Enterprise" zoning area of San Bernardino County. The subject property is located on two parcels on the south side of Valley Boulevard, between Cedar Avenue and Locust Avenue, west of Cedar Avenue, on 6.07-acres in Bloomington, CA. To the north is Valley Boulevard, an improved roadway, to the east and west are partially developed properties. To the south by Interstate 10.

Drainage in the area generally flows to the south. The site is bounded to the north by Valley Boulevard, which flows to the west, and to the south by Interstate 10. There is an existing concrete trapezoidal channel immediately adjacent to the southern property line, located within Caltrans right-of-way, which flows to the east. Caltrans also has plans to build a sound wall along the southern property line in the near future. To the east and west are partially developed properties that naturally drain to the south. Therefore, there are no significant offsite tributary or concerns that would affect site hydrology.

1.4 Existing Conditions On-Site Areas

The existing on-site project area is generally flat, sloping to the south. The site was formerly used as a county park which has been demolished and the property clean. Currently there are no significant drainage feature that would affect hydrology.

1.5 References

The following documents have been made part of this study by reference:

- 1.) San Bernardino County Department of Public Works Hydrology Manual, August 1986.
- 2.) Site plans by Joseph E. Bonadiman & Associates, Inc., August 2023.

B. Methodology

1.1 General Methodology

The requirements and recommendations found in the San Bernardino County Hydrology Manual (August 1986) provided by the San Bernardino County Department of Public Works was used as the basis for the methodology and calculations found in this Study. On-site calculations were performed using the Rational and Unit Hydrograph methods per County requirements for the Santa Ana River watershed.

For the 2 & 5-Year storm event, Antecedent Moisture Condition (AMC) I was used. For the 10, & 25-Year storm event, Antecedent Moisture Condition (AMC) II was used. For the 100-Year storm event, Antecedent Moisture Condition (AMC) III was used. The San Bernardino County-approved software applications provided by Civil Design ® Corporation were used for all study calculations.

1.2 Sources of Topography

Mapping of existing condition on-site and off-site area and topographic contours were provided by Joseph E. Bonadiman & Associates, Inc., dated November 2022,

1.3 FEMA Floodplain Identification & Considerations

This site is located in an unshaded Zone X, "Area of Minimal Flood Hazard".

Refer to Exhibit "C" for FEMA Map No. 06071C8659H (not printed).

1.4 Watershed Precipitation

Precipitation values used in this report were obtained from the isohyetal maps included in the San Bernardino County Hydrology Manual and are tabulate below. The slope of intensity duration curve value of 0.60 (valley areas) was used per the County Hydrology Manual.

•	
STORM	PRECIPITATION
10-YEAR, 1-HOUR	0.92
100-YEAR, 1-HOUR	1.32
2-YEAR, 6-HOUR	1.62
100-YEAR, 6-HOUR	3.50
2-YEAR, 24-HOUR	3.01
100-YEAR, 24-HOUR	7.80
	10-YEAR, 1-HOUR 100-YEAR, 1-HOUR 2-YEAR, 6-HOUR 100-YEAR, 6-HOUR 2-YEAR, 24-HOUR

Table 1 - Precipitation Values (Rational Method Calculations)

Refer to Exhibit "D" for the San Bernardino County Hydrology Manual isohyetal maps used in this report.

1.5 Watershed Losses

Soil types and SCS Curve Number (AMC II) used in this report were obtained from the Soils Group maps and Figures C-2 & 3, included in the San Bernardino County Hydrology Manual, and are tabulated below.

Type "A" is shown for the entire area of study per Figure C-6 of the San Bernardino County Hydrology Manual. The existing conditions study site is currently developed, consisting of buildings and impervious parking area and associated hardscape with minimal landscaping in poor condition. Per the San Bernardino County Hydrology Manual Figure C-2 & 3, the SCS Curve Number (AMC II) used for existing conditions areas is 50 ("Grass, Annual or Perennial/ Fair Condition"). The SCS Curve Number (AMC II) used for developed conditions pervious areas is 32 ("Landscape/Good Condition") for landscape areas and 98 ("Impervious Areas") for the parking lots, roofs, driveways, etc.

SOIL TYPE	QUALITY OF COVER	SCS CURVE NO. (AMC II)
А	FAIR	50
А	GOOD	32
А		98
	A	SOIL TYPE COVER A FAIR A GOOD

Refer to <u>Exhibit "E"</u> for the San Bernardino County Hydrology Manual soils maps and SCS Curve Number per Figure C-2 & 3 and C-6 used in this report.

1.6 Rational Hydrology Method & Unit Hydrograph Hydrology Method Calculations

The San Bernardino County Rational Method (RSBC) and San Bernardino County Unit Hydrograph Method (UNSBC) software applications provided by CivilDesign® Corporation was used for the rational method and unit hydrograph method calculations included in this report. The hydrograph routing/basin analysis (ROUTE) software application provided by CivilDesign® Corporation was used for the basin routing calculations included in this report.

HYDROLOGY & HYDRAULICS REPORT

C. Existing Conditions Hydrology Calculations & Summary

1.1. Existing Conditions Rational Method Calculations

Input values for the existing conditions rational method calculations prepared for this report are tabulated below:

DRAINAGE AREA	SIZE (AC)	TYPE	COVER	SOIL	SCS (AMC II)	PERVIOUS FRACTION	U.S. ELEV. (FT)	D.S. ELEV. (FT)	LENGTH (FT)	
A1 NODE 0-1	6.07	Perennial Grass	Fair	А	50	1.00	1113.4	1102.2	841	

Table 3 - Existing Conditions Rational Method Input Values

Output for the existing conditions rational method calculations are tabulated as follows:

Table 4 – Existing Conditions Rational Method Output Calculations

				_
AREA	NODE	Q₁₀ (CFS	Q ₁₀₀ (CFS)	
А	0-1	4.12	9.35	
TC ₁₀₀	(MIN)	24	.77	

Refer to <u>Attachment No. 1</u> for printouts of the existing conditions rational method calculations. Refer to <u>Exhibit "F"</u> for the Existing Conditions Hydrology Study Map.

1.2. Existing Conditions Unit Hydrograph Method Calculations

Based on the output data from the Rational Method above the 100-year TC value was used. Input values for the developed conditions unit hydrograph method calculations prepared for this report are tabulated as follows:

Table 5 - Existing Conditions Unit Hydrograph Method Input Values

DRAINAGE AREA	SIZE (AC)	SCS	PERVIOUS FRACTION	TC ₁₀₀ (HR)
А	6.07	50	1.00	0.413

Output for the existing conditions unit hydrograph method calculations are tabulated as follows:

DRAINAGE AREA	SIZE (AC)	Q ₂ (CFS)	Q₅ (CFS)	Q ₁₀ (CFS	Q ₂₅ (CFS)	Q ₁₀₀ (CFS)	LAG ₁₀₀ (HR)
A	6.07	2.01	2.91	4.34	5.59	9.02	0.330
DRAINAGE AREA	SIZE (AC)	VOL₂ (AF)	VOL₅ (AF)	VOL ₁₀ (AF)	0.7517	V ₁₀₀ (AF)	LAG ₁₀₀ (HR)
A	6.07	0.0782	0.1143	0.4732	0.7517	2.2712	0.330

Table 6 - Existing Conditions Unit Hydrograph Method Output Calculations

Refer to <u>Attachment No. 2</u> for printouts of the existing conditions unit hydrograph calculations. Refer to Exhibit "F" for the Existing Conditions Hydrology Study Map.

D. Developed Conditions Hydrology Calculations

1.1 Developed Conditions Rational Method Calculations

Input values for the final conditions rational method calculations were adjusted accordingly and are tabulated below:

DRAINAGE AREA	SIZE (AC)	TYPE	COVER	SOIL	SCS (AMC II)	PERVIOUS FRACTION	U.S. ELEV. (FT)	D.S. ELEV. (FT)	LENGTH (FT)
A1 NODE 0-1	0.57	LANDSCAPING	GOOD	A	32	0.28	1112.49	1110.55	211.76
PIPE NODE 1-2	12"	~	~	~	~	~	1106.55	1104.85	339.03
A2 NODE 2	0.57	LANDSCAPING	GOOD	A	32	0.29	~	~	~
PIPE NODE 2-3	18"	~	~	~	~	2	1104.85	1100.40	605.39
A3 NODE 3	1.10	LANDSCAPING	GOOD	A	32	0.14	~	~	~
PIPE NODE 3-4	18"	~	~	~	~	~	1100.40	1098.90	26.39
		CONFL	UENCE MI	NOR ST	REAM 1 C	F 3 AT NODE 4			
A4 NODE 5-6	0.93	LANDSCAPING	GOOD	A	32	0.17	1112.49	1104.40	580.45
PIPE NODE 6-4	12"	~	~	~	~	~	1100.40	1098.90	26.74
		CONFL	UENCE MI	NOR ST	REAM 2 C	F 3 AT NODE 4			
A5 NODE 0-7	2.38	LANDSCAPING	GOOD	A	32	0.31	1112.49	1106.40	446.75
PIPE NODE 7-4	12"	~		~	~	~	1102.40	1098.90	81.95
	CONFLUENCE MINOR STREAM 3 OF 3 AT NODE 4								
A6 NODE 4	0.52	LANDSCAPING	GOOD	А	32	0.88	~	~	~

Output for the developed conditions rational method calculations are tabulated as follows:

Table 9 – Developed Conditions Rational Method Output Calculations

AREA	AREA NODE		Q ₁₀₀ (CFS)
А	0-1	12.85	19.69
TC ₁₀₀	(MIN)	9.0	65

Refer to <u>Attachment No. 3</u> for printouts of the final condition rational method calculations. Refer to <u>Exhibit "G"</u> for the Final Conditions Hydrology Study Map.

Developed Conditions Unit Hydrograph Method Calculations 1.2

Based on the output data from the Rational Method above the 100-year TC value was used. Input values for the existing conditions unit hydrograph method calculations prepared for this report are tabulated as follows:

Table 8 – Developed Conditions Unit Hydrograph Method Input Values							
DRAINAGE AREA	SIZE (AC)	SCS	PERVIOUS FRACTION	TC₁₀₀ (HR)			
A	6.07	32	0.30	0.161			

Output for the developed conditions unit hydrograph method calculations are tabulated as follows:

Table 9 Developed Conditions Unit Hydrograph Method Output Calculations

DRAINAGE AREA	SIZE (AC)	Q₂ (CFS)	Q₁₀ (CFS	Q ₂₅ (CFS)	Q ₁₀₀ (CFS)	LAG ₁₀₀ (HR)
A	6.07	8.13	12.38	14.81	18.86	0.129
DRAINAGE AREA	SIZE (AC)	VOL ₂ (AF)	VOL ₁₀ (AF)	VOL ₂₅ (AF)	VOL ₁₀₀ (AF)	LAG ₁₀₀ (HR)
А	6.07	1.0139	1.7341	2.1611	3.0896	0.129

Refer to Attachment No. 4 for printouts of the existing conditions unit hydrograph calculations. Refer to Exhibit "F" for the Existing Conditions Hydrology Study Map.

E. Detention Basin Calculations

1.1 Detention Basin Analysis

A detention/retention basin is proposed to attenuate storm flows and for WQMP volume retention and infiltration. Input values of the depth vs. volume for detention basin routing calculations prepared for this report are tabulated as follows:

ELEVATION (FT)	DEPTH (FT)	TOTAL VOLUME (CF)	DETENTION VOLUME (AF)
	0.00	0.00	0.0000
	0.50	888	0.0204
	1.50	3,621	0.0831
OUTLET	2.50	7,034	0.1615
	3.50	10,761	0.2470
	4.50	14,627	0.3358
	5.50	18,493	0.4245
	6.50	22,220	0.5101
	7.50	25,633	0.5884
	8.50	28,366	0.6512
	9.50	30,142	0.6920

Table 10 – Detention Basins A, System Depth vs. Volume

Output for the detention basin routing calculations are tabulated as follows:

BASIN AREA	STORM EVENT	OUTLET (IN)	OUTLET LENGTH (FT)	DIFFERENCE IN ELEVATION (FT)	OUTFLOW PEAK Q (CFS)	BASIN WATER DEPTH (FT)	
	2		50	1.00	2.15	4.47	
•	10	8" PIPE			2.63	5.70	
A	25	OUTLET			2.92	6.54	
	100				3.65	9.14	

Table 11 – Detention Basins Output Calculations

All detention basins shall be design based on the "Detention Basin Design Criteria for San Bernardino County", as follows:

- When feasible no more than 50% of the basins volume shall be above natural grade.
- 3:1 maximum slope on wet side and 2:1 maximum slope on dry side.
- Maximum water depth should not exceed 6'.
- A spillway shall be designed to pass the fully developed 1000-year peak flow rate, $(Q_{1000} = 1.35 Q_{100})$.
- A minimum of 1-foot of freeboard above the 1000-year HWL or 2-feet of freeboard above the 100 –year HWL, whichever is more stringent.
- Access to the basin shall be gated and locked.

Refer to <u>Attachment No. 5</u> for a printout of the 2-year, 10-year, 25-year and 100-year hydrograph routing calculations for the proposed basins system.

F. Summary & Conclusion

1.1 Summary

A summary of the results of the Rational Method calculations are tabulated below:

Table 12 - Rational Method Calculations Summary

AREA	STORM EVENT	EXISTING CONDITIONS PEAK Q (CFS)	DEVELOPED CONDITIONS PEAK Q (CFS)	INCREASE (CFS)*
•	10	4.12	12.85	8.73
A	100	9.35	19.69	10.34

* Above listed values are results prior to basin routing & WQMP storage and not reflective of actual site discharge.

A summary of the results of the unit hydrograph calculations are tabulated below:

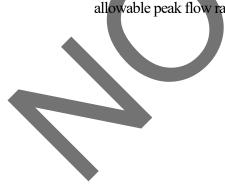

AREA	STORM EVENT	EXISTING CONDITIONS PEAK Q (CFS)	DEVELOPED CONDITIONS PEAK Q (CFS)	INCREASE (CFS)*	EXISTING CONDITIONS VOLUME (AF)	DEVELOPED CONDITIONS VOLUME (AF)	INCREASE (AF)*
	2	2.01	8.13	6.12	0.0782	1.0139	0.9357
А	10	4.34	12.38	8.04	0.4732	1.7341	1.2609
A	25	5.59	14.81	9.22	0.7517	2.1611	1.4094
	100	9.02	18.86	9.84	2.2712	3.0896	0.8184

Table 13 – Unit Hydrograph Calculations Summary

* Above listed values are results prior to basin routing & WOMP storage and not reflective of actual site discharge.

As indicated above, an increase in peak flow and runoff volume as a result of the proposed development. The increase in flow rates shall be mitigated onsite as to reduce the total site discharge to 90% of the predevelopment conditions per the San Bernardino County Hydrology Manual.

Per "San Bernardino County Detention Basin Design Criteria" post-development peak flow rates generated by the site shall be less than or equal to 90% of the pre-development peak flow rate based on shifting the rainfall values for the 10-year, 25-year and 100-years storms, providing a least a 50% confidence level that the detention basin outflow will not adversely impact downstream properties. A summary of the maximum allowable peak flow rates are tabulated below:

EXISTING AREA	STORM EVENT	EXISTING CONDITIONS PEAK Q (CFS)	ADJUSTED PEAK Q (CFS)	MAXIMUM ALLOWABLE DISCHARGE 90% OF ADJUSTED PEAK Q (CFS)	
	2	2.01	Q ₂ =2.01	1.81	
	10	4.34	Q5=2.91	2.63	
A	25	5.59	Q ₁₀ =4.34	3.91	
	100	9.02	Q ₂₅ =5.59	5.03	

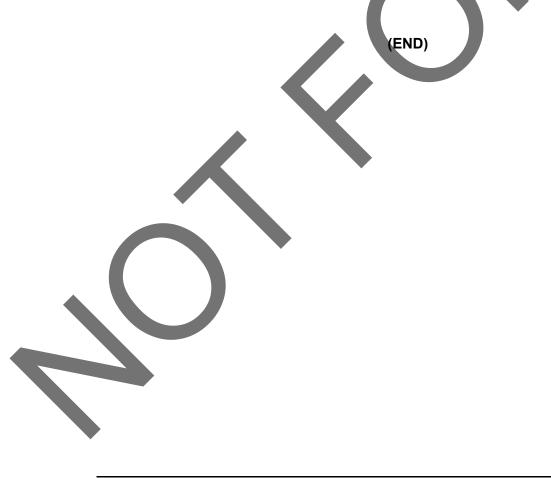
Table 14 - Area "A" Outlet Requirements

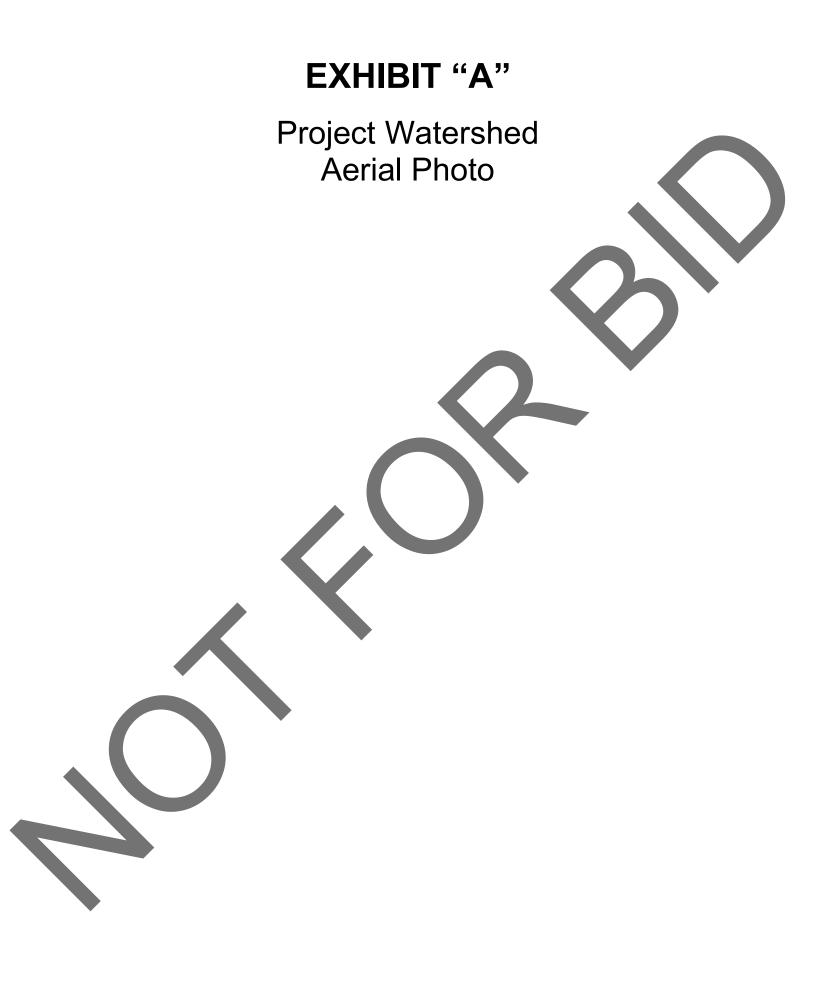
A summary of the results of the detention basin routing calculations are tabulated below:

Table 15 - Detention Basins Routing Summary

AREA	STORM EVENT	MAXIMUM BASIN DISCHARGE 90% OF ADJUSTED PEAK Q (CFS)	OUTFLOW PEAK Q (CFS)	TOTAL BASIN DEPTH (ft)	INCREASED DISCHARGE VOLUME (AF)*
	2	1.81	2.15	4.47	1.0139
A	10	2.62	2.63	5.70	1.7341
	25	3.91	2.92	6.54	2.1611
	100	5.03	3.65	9.14	3.0896

* Above listed values do not reflect WQMP storage volume.

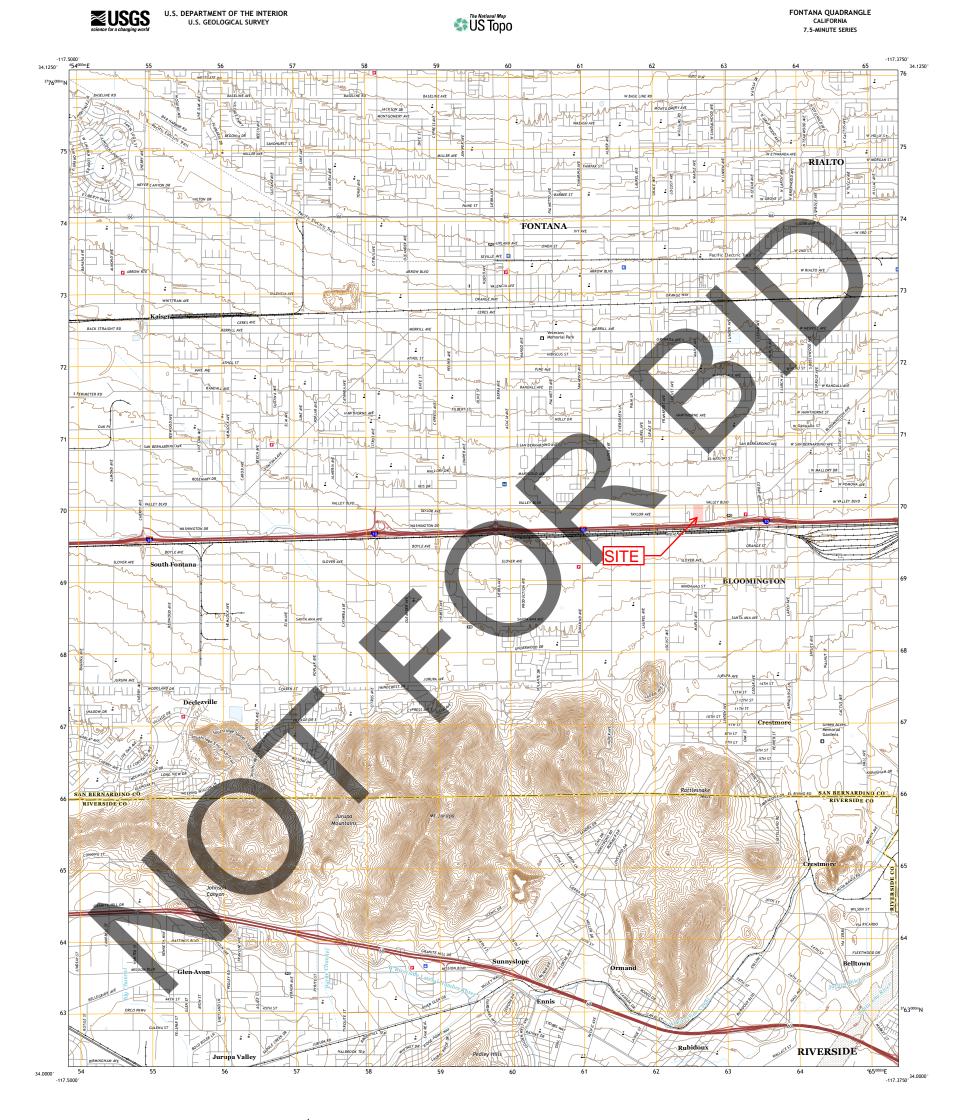

Refer to <u>Attachment No. 5</u> for a printout of the spillway width calculation calculations for the proposed basins system.

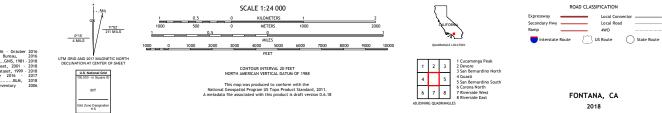

1.2 Conclusion

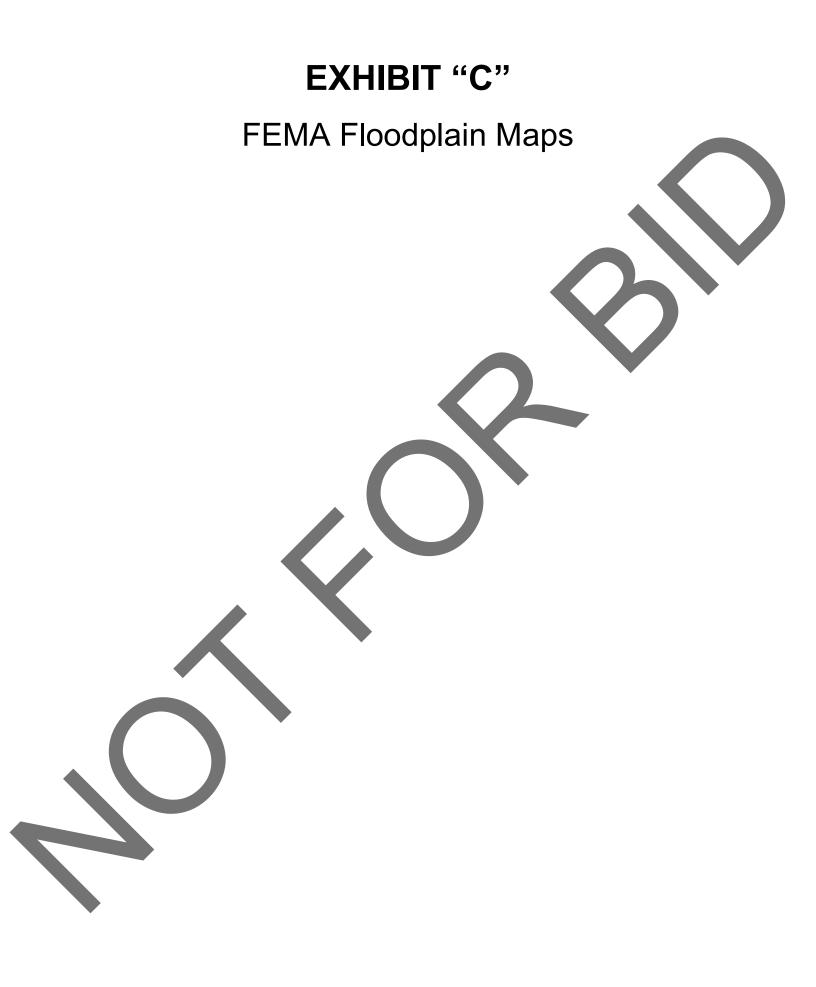
As indicated in Tables 12 & 13, development of the site results in an increase in peak flow and runoff volume as a result of the proposed development and therefore requires mitigation.

Per the San Bernardino County Hydrology Manual, developed sites shall not increase existing condition flow rate. In order to meet mitigation requirements per "San Bernardino County Detention Basin Design Criteria" post-development peak flow rates generated by the site shall be less than or equal to 90% of the pre-development peak flow rate based on shifting the rainfall values for the 10-year, 25-year and 100-years storms, providing a least a 50% confidence level that the detention basin outflow will not adversely impact downstream properties. Mitigation of the 10, 25 & 100-year storm can be achieved with the use of an underground storm water chamber with a minimum capacity of 0.6920AF, having the properties as shown on Table 10. The chamber shall be equipped with a 8" overflow pipe sloped at 1% located at the bottom of the system. This results in the peak outflows and chamber depths as shown in Table 11. Resulting in the total site discharge as shown in Table 15. For mitigation of the 2-year storm see the project specific WQMP.

With the above mitigation measure the development of the 18313 Valley Boulevard will not have a negative impact on downstream properties or facilities. It should be noted that under the assumed 100-year AMC III conditions, infiltration is assumed to be zero (saturated). Therefore, infiltration is not a factor in calculations. Refer to project specific WQMP for additional requirements.

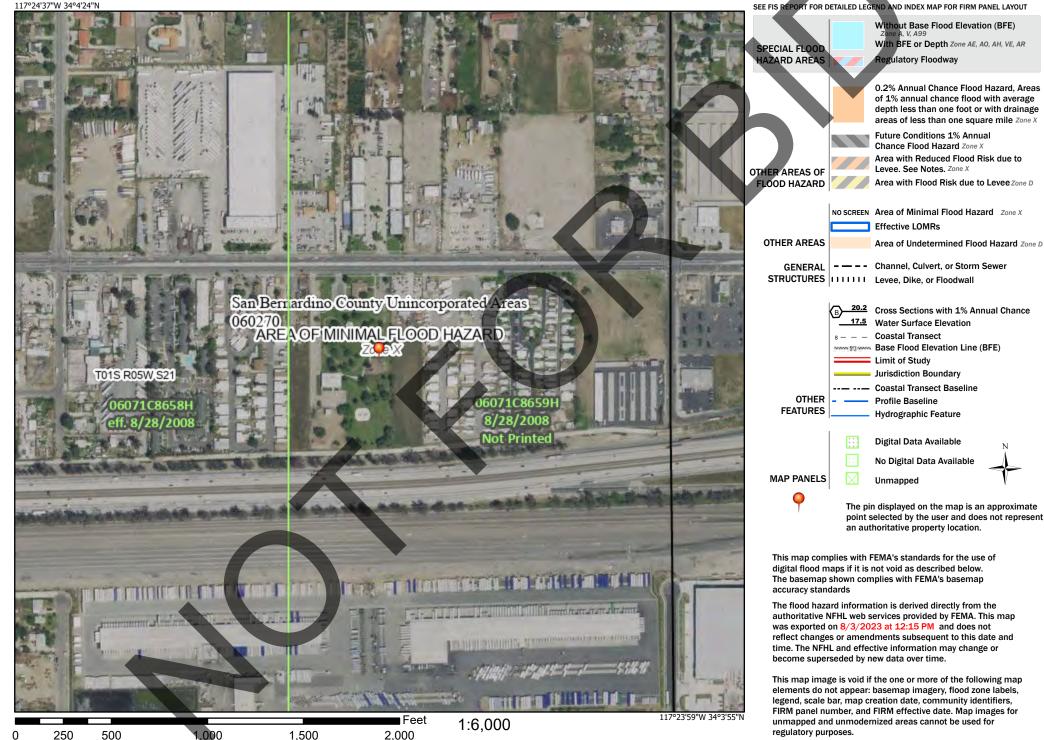



EXHIBIT "B"

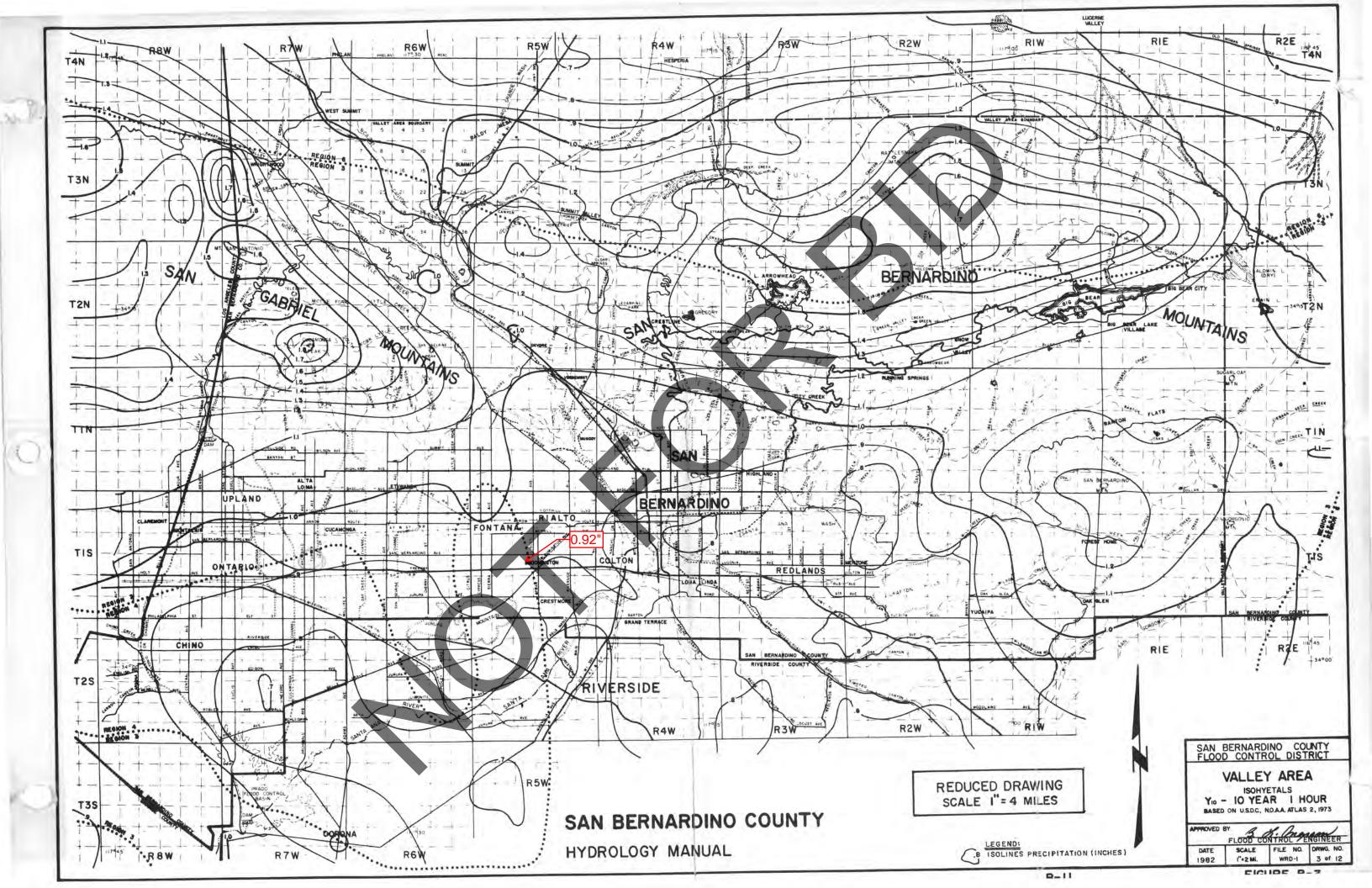

Project Watershed USGS Quadrangle

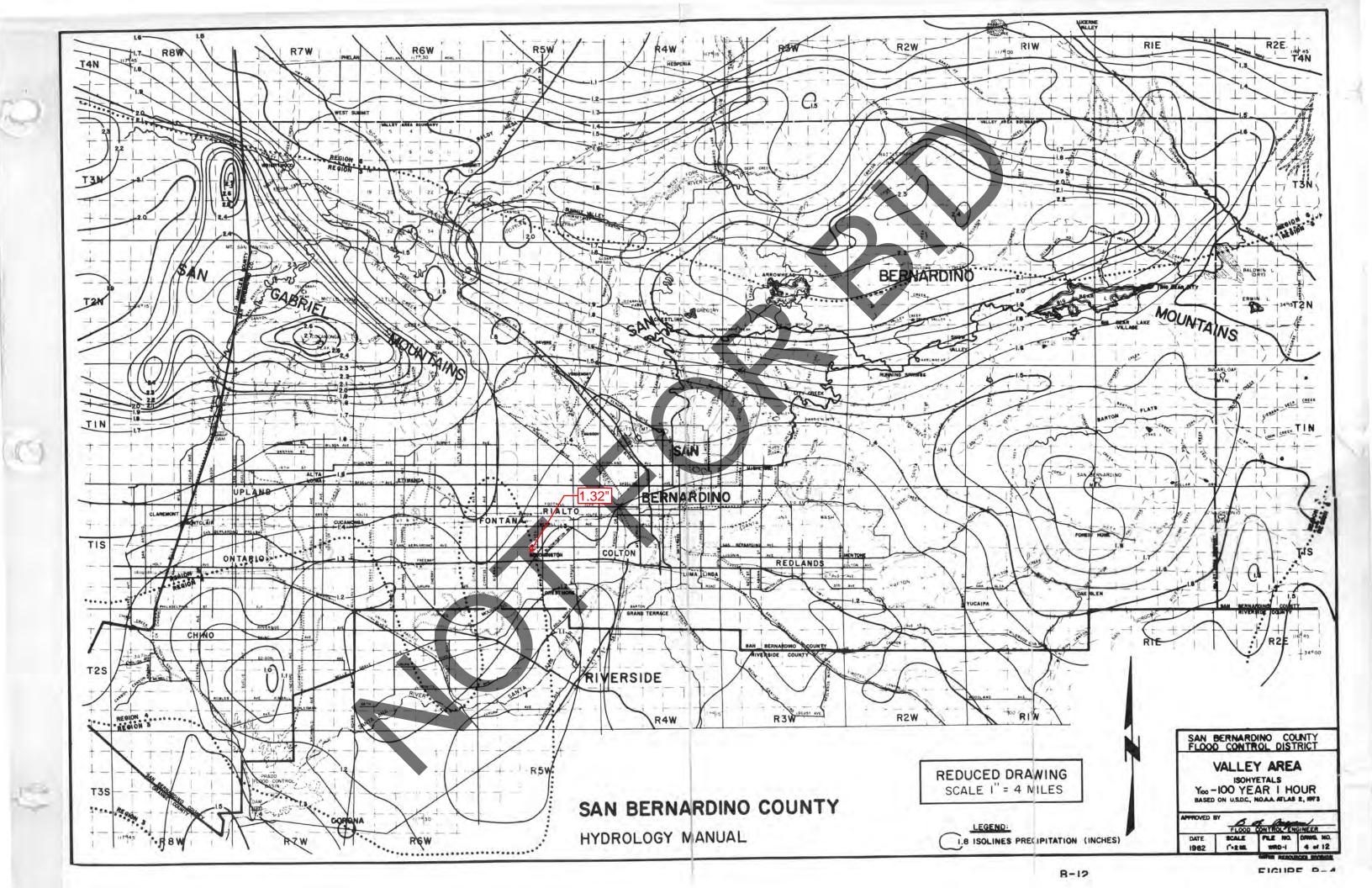
Produced by the United States Geological Survey North American Datum of 1983 (MD83) Voris Geodetic System of 1984 (WOS40, Projection and 1000-meter graful/investal Transverse Metricator, Zone 115 penetized for this map scale. Private lasks within government reservations may not be shown. Distain permission before entering private lands.

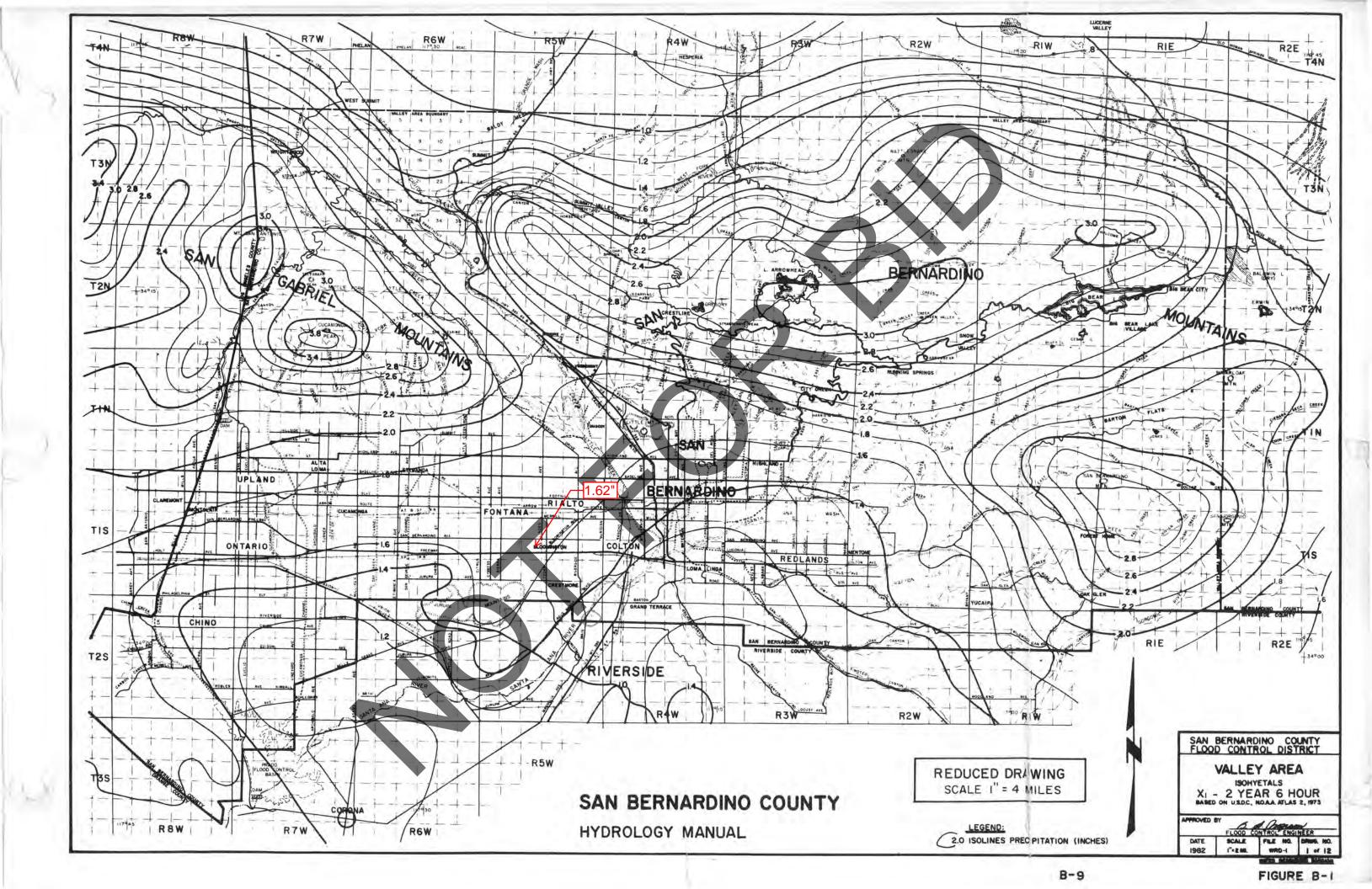
Imagery				
Roads			Bureau,	
Names			GNIS, 1981	- 2018
HydrographyNation	nal Hy	drography E	Dataset, 2001 -	2018
Contours.				
BoundariesMultiple sources;				
Public Land Survey System			BLM,	2018
WetlandsFWS National	v	Vetlands	Inventory	2006

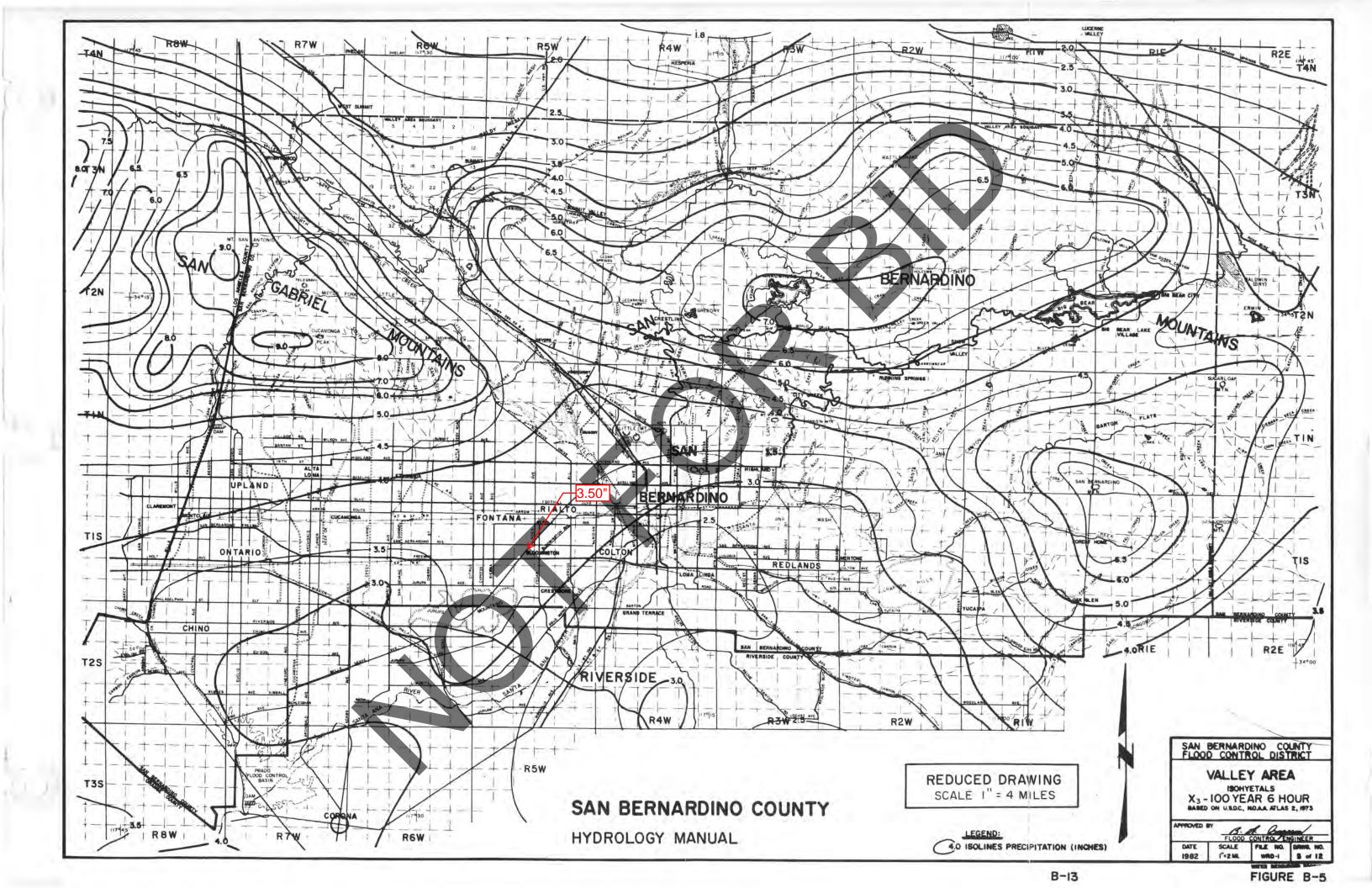


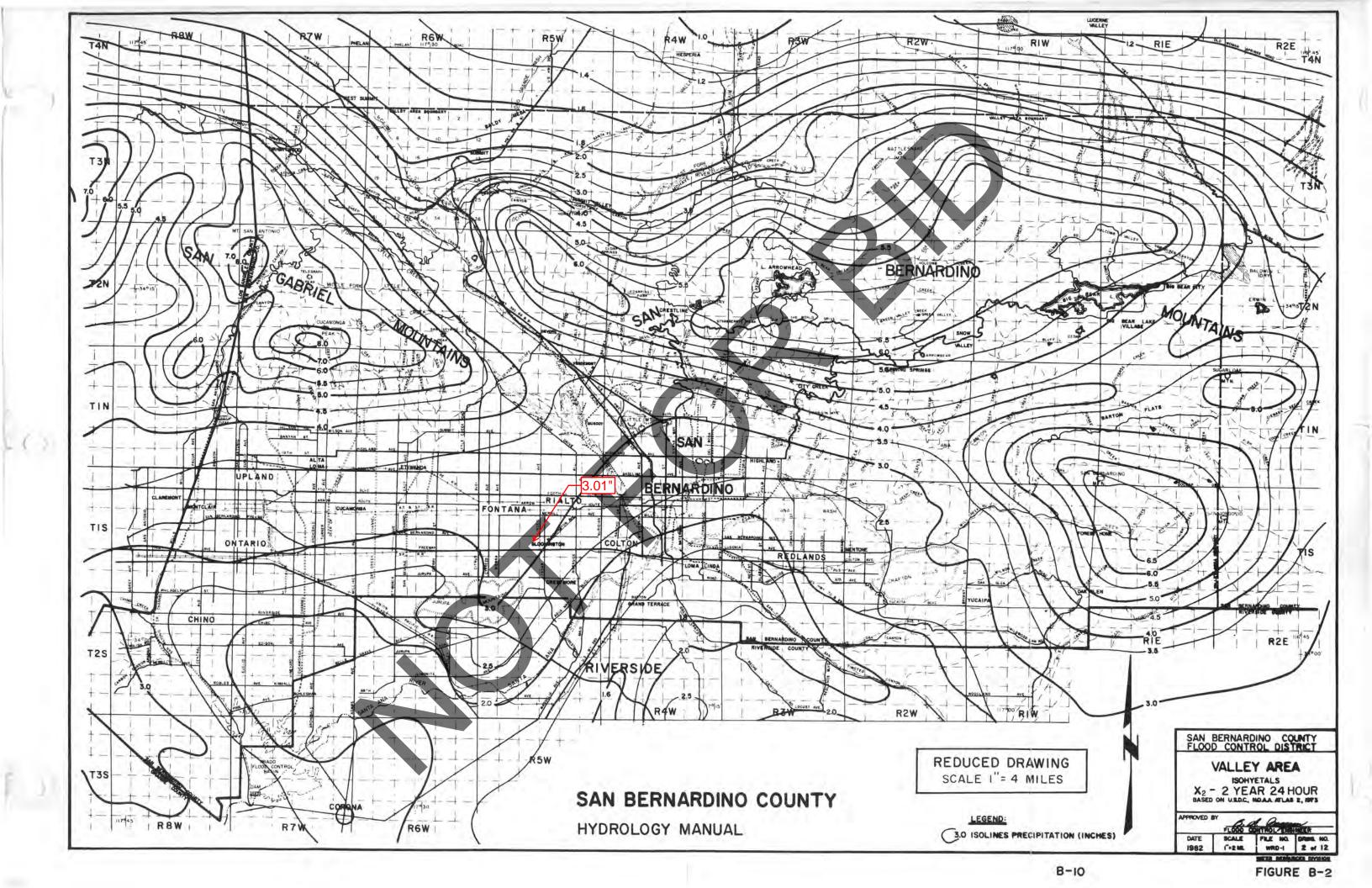
National Flood Hazard Layer FIRMette

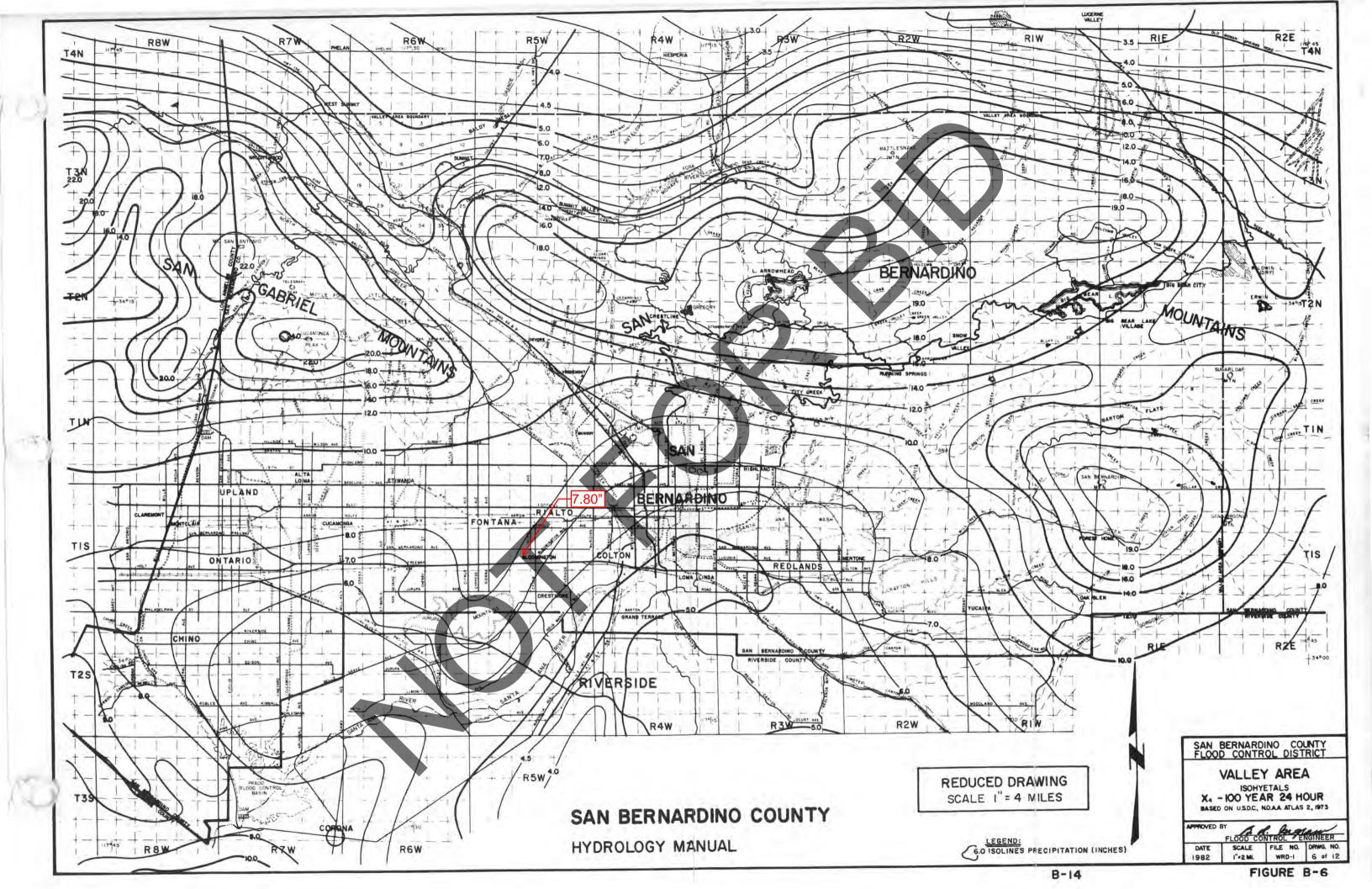





Basemap Imagery Source: USGS National Map 2023


EXHIBIT "D"


San Bernardino County Hydrology Manual **Isohyetal Maps**



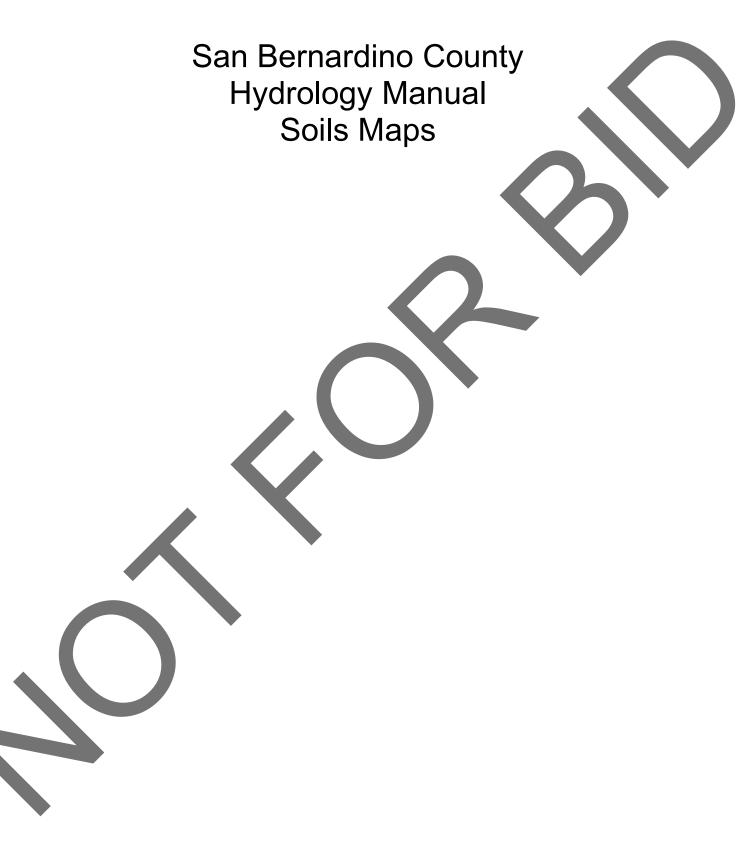


EXHIBIT "E"

Residential Landscaping (Lawn, Shrubs, etc.) - The pervious portions of commercial establishments, single and multiple family dwellings, trailer parks and schools where the predominant land cover is lawn, shrubbery and trees.

<u>Row Crops</u> - Lettuce, tomatoes, beets, tulips or any field crop planted in rows far enough apart that most of the soil surface is exposed to rainfall impact throughout the growing season. At plowing, planting and harvest times it is equivalent to fallow.

Small Grain - Wheat, oats, barley, flax, etc. planted in rows close enough that the soil surface is not exposed except during planting and shortly thereafter.

Legumes - Alfalfa, sweetclover, timothy, etc. and combinations are either planted in close rows or broadcast.

Fallow - Fallow land is land plowed but not yet seeded or tilled,

<u>Woodland - grass</u> - Areas with an open cover of broadleaf or coniferous trees usually live oak and pines, with the intervening ground space occupied by annual grasses or weeds. The trees may occur singly or in small clumps. Canopy density, the amount of ground surface shaded at high noon, is from 20 to 50 percent.

<u>Woodland</u> - Areas on which coniferous or broadleaf trees predominate. The canopy density is at least 50 percent. Open areas may have a cover of annual or perennial grasses or of brush. Herbaceous plant cover under the trees is usually sparse because of leaf or needle litter accumulation.

<u>Chaparral</u> - Land on which the principal vegetation consists of evergreen shrubs with broad, hard, stiff leaves such as manzonita, ceanothus and scrub oak. The brush cover is usually dense or moderately dense. Diffusely branched evergreen shrubs with fine needle-like leaves, such as chamise and redchank, with dense high growth are also included in this soil cover.

<u>Annual Grass</u> - Land on which the principal vegetation consists of annual grasses and weeds such as annual bromes, wild barley, soft chess, ryegrass and filaree.

<u>Irrigated Pasture</u> - Irrigated land planted to perennial grasses and legumes for production of forage and which is cultivated only to establish or renew the stand of plants. Dry land pasture is considered as annual grass.

Meadow - Land areas with seasonally high water table, locally called cienegas. Principal vegetation consists of sod-forming grasses interspersed with other plants.

Orchard (Deciduous) - Land planted to such deciduous trees as apples, apricots, pears, walnuts, and almonds.

Orchard (Evergreen) - Land planted to evergreen trees which include citrus and avocados and coniferous plantings.

<u>Purf</u> - Golf courses, parks and similar lands where the predominant cover is irrigated mowed close-grown turf grass. Parks in which trees are dense may be classified as woodland.

SAN	BERNARDINO	COUNTY

S C S COVER TYPE DESCRIPTIONS

HYDROLOGY MANUAL

POOR: Heavily grazed or regularly burned areas. Less than 50 percent of the ground surface is protected by plant cover or brush and tree canopy.

FAIR: Moderate cover with 50 percent to 75 percent of the ground surface protected by vegetation.

<u>GOOD:</u> Heavy or dense cover with more than 75 percent of the ground surface protected by vegetation.

In most cases, watershed existing conditions cover type and quality can be readily determined by a field review of a watershed. In ultimate planned open spaces, the soil cover condition shall be considered as "good." Figure C-3 provides the CN values for various types and quality of ground cover. Impervious areas shall be assigned a CN of 98. It is noted that for ultimately developed conditions, the CN for urban landscaping (turf) is provided in Figure C-3.

C.4. WATERSHED DEVELOPMENT CONDITIONS

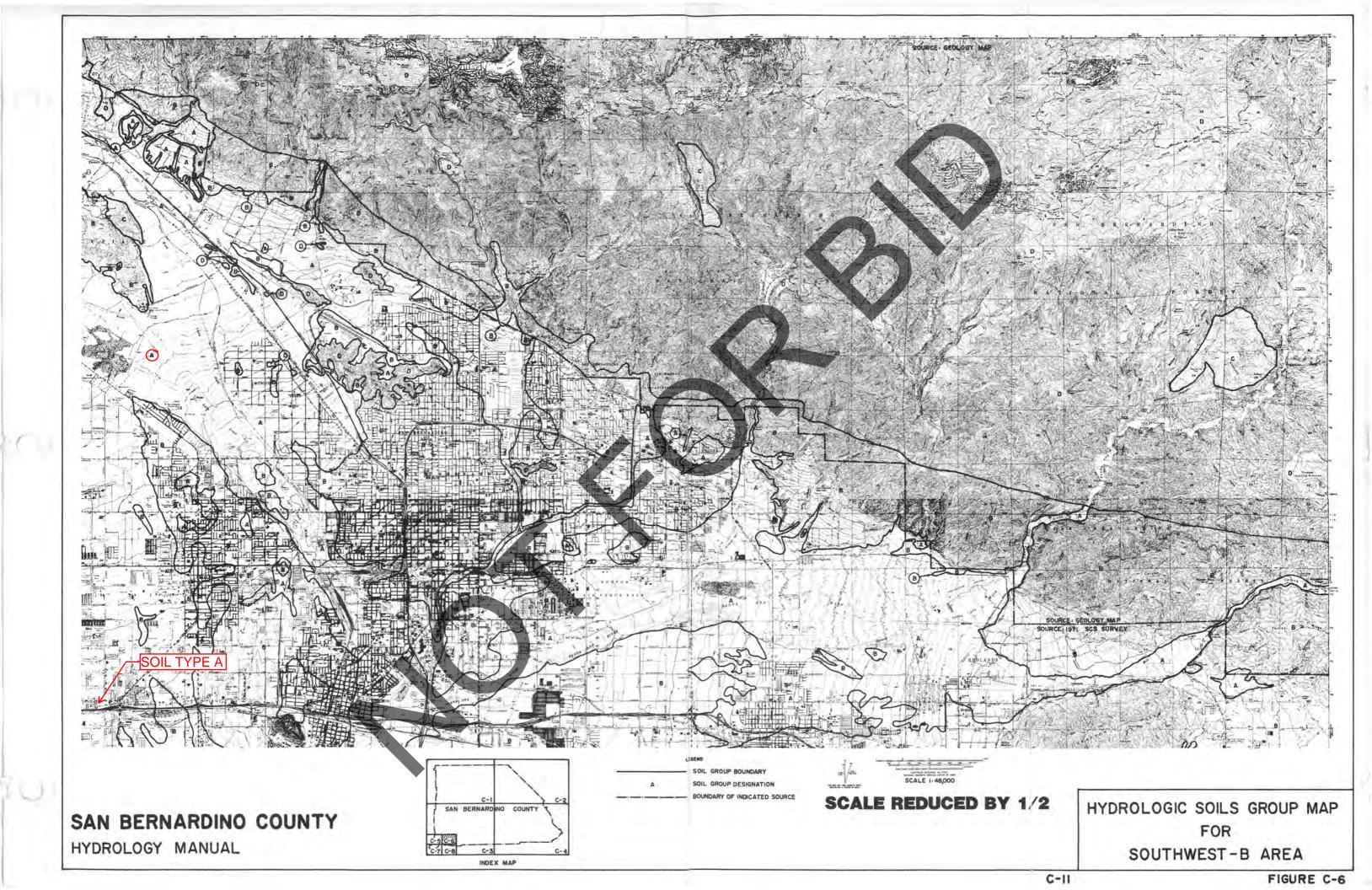
Ultimate development of the watershed should normally be assumed since watershed urbanization is reasonably likely within the expected life of most hydraulic facilities. Long range master plans for the County and incorporated cities should be reviewed to insure that reasonable land use assumptions are made for the ultimate development of the watershed. A field review shall also be made to confirm existing use and drainage patterns. Particular attention shall be paid to existing and proposed landscape practices, as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. Appropriate actual impervious percentages can then be selected from Figure C-4. It should be noted that the recommended values from these figures are for average conditions and, therefore, some adjustment for particular applications may be required.

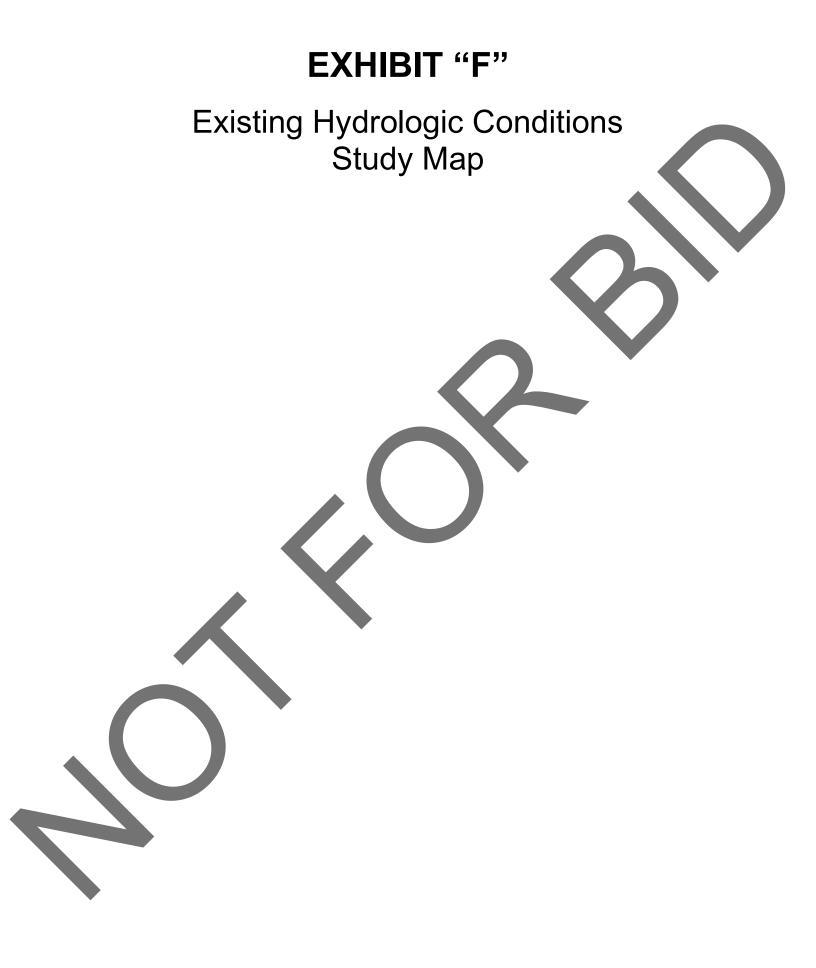
	Runoff Index Numbers of Hydrologic Soil-Cover Co	mplexes For Pervic	ous Ar	eas-A	MC II	
	Cover Type (3)	Quality of Cover (2)	A	Soil C B	Group C	D
2	NATURAL COVERS -	r.,			# • <u> </u>	
	Barren (Rockland, eroded and graded land)		78	86	91	93
	Chaparrel, Broadleaf (Manzonita, ceanothus and scrub oak)	Poor Fair Good	53 40 31	70 63 57	80 75 71	85 81 78
	Chaparrel, Narrowleaf (Chamise and redshank)	Poor Fair	71 55	82 72 -	88 81	91 86
	Grass, Annual or Perennial	Poor Fair Good	67 50 38	78 69 61	86 79 74	89 84 80
	Meadows or Cienegas (Areas with seasonally high water table, principal vegetation is sod forming grass)	Poor Fair Good	63 51 30	77 70 58	85 80 71	88 84 78
	Open Brush (Soft wood shrubs - buckwheat, sage, etc.)	Poor Fair Good	62 46 41	76 66、 63	84 77 75	88 83 81
X	Woodland (Coniferous or broadleaf trees predominate. Canopy density is at least 50 percent.)	Poor Fair Good	45 36 25	66 60 55	77 73 70	<u>83</u> 79 77
	Woodland, Grass (Coniferous or broadleaf trees with canopy density from 20 to 50 percent) <u>URBAN COVERS -</u>	Poor Fair Good	57 44 33	73 65 58	82 77 72	86 82 79
	Residential or Commercial Landscaping (Lawn, shrubs, etc.)	Good	<mark>32</mark>	56	69	75
	Turf (Irrigated and mowed grass)	Poor Fair Good	58 44 33	74 65 58	83 77 72	87 82 79
	AGRICULTURAL COVERS - Fallow (Land plowed but not tilled or seeded)		77	86	91	94
		CURVE				
	SAN BERNARDINO COUNTY	ź		NUN	IBEF	۶S
	HYDROLOGY MANUAL	FOR		REAS	5	

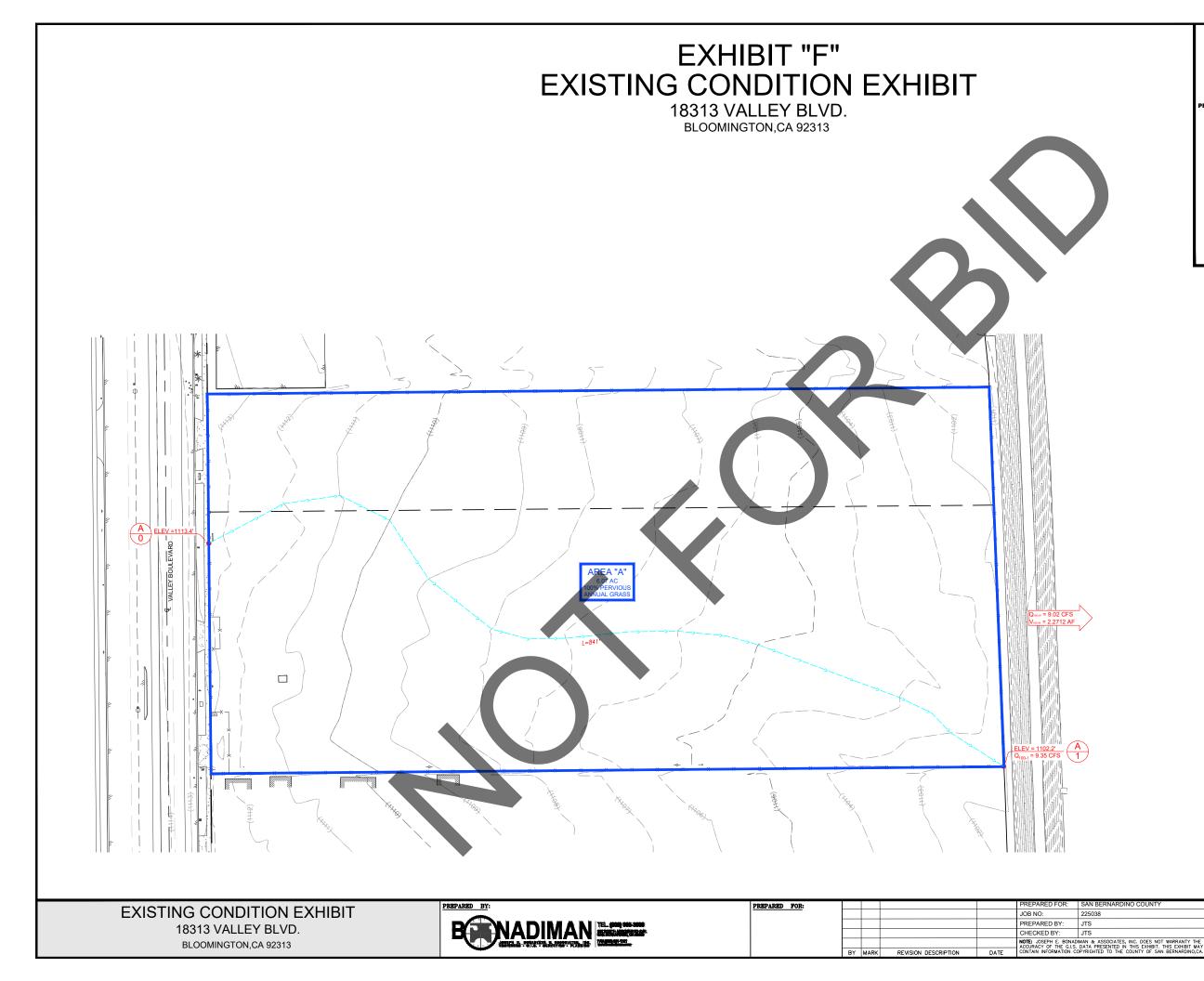
	Runoff Index Numbers of Hydrologic Soil-Cover Comp	olexes For Pervio	ous Ar	eas-A	MC II	•
<u></u>	Cover Type (3)	Quality of Cover (2)	A	Soil (B	Group C	
AGI	RICULTURAL COVERS (Continued)					
	Legumes, Close Seeded (Alfalfa, sweetclover, timothy, etc.)	Poor Good	66 58	77 72	85 81	
	Orchards, Evergreen (Citrus, avocados, etc.)	Poor Fair Good	57 44 33	73 65 58	82 77 72	
	Pasture, Dryland (Annual grasses)	Poor Fair Good	68 49 39	79 69 61	86 79 74	
	Pasture, Irrigated (Legumes and perennial grass)	Poor Fair Good	58 44 33	74 65 58	83 77 72	
	Row Crops (Field crops - tomatoes, sugar beets, etc.)	Poor Good	72 67	81 78	88 85	-
	Small grain (Wheat, oats, barley, etc.)	Poor Good	.65 63	76 75	84 83	n a constant
Not	tes:					
1.	All runoff index (RI) numbers are for Antecedent Mo	oisture Conditior	n (AM)	C) II.		
2.	Quality of cover definitions:					
	Poor-Heavily grazed or regularly burned areas. Less surface is protected by plant cover or brush an	•	t of th	ne gro	und	
2	Fair-Moderate cover with 50 percent to 75 percent of	of the ground su	rface	protec	cted.	
÷	Good-Heavy or dense cover with more than 75 perce	ent of the ground	l surfa	ice pro	otecte	ed.
3.	See Figure C-2 for definition of cover types.					

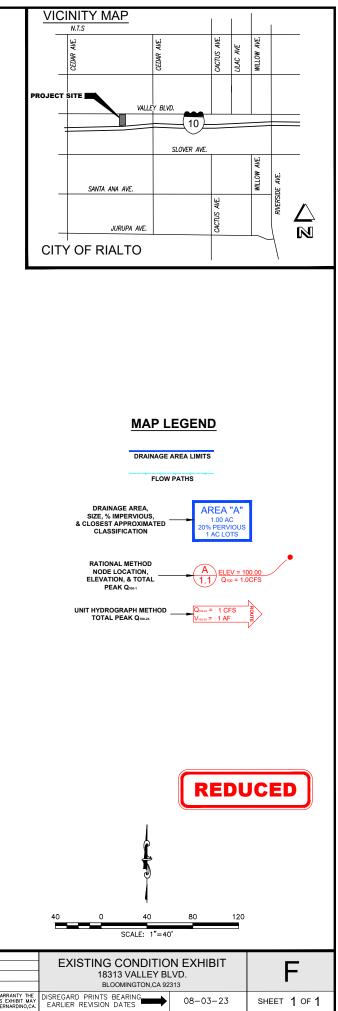
SAN BERNARDINO COUN	ITY
---------------------	-----

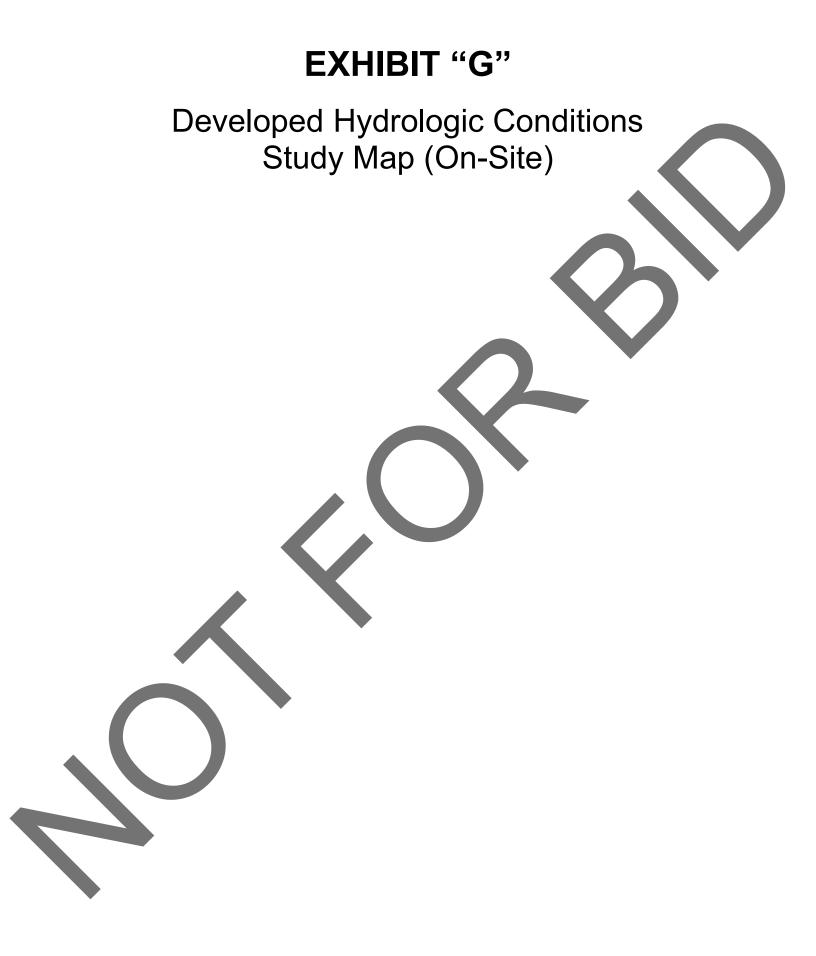
NUMBERS

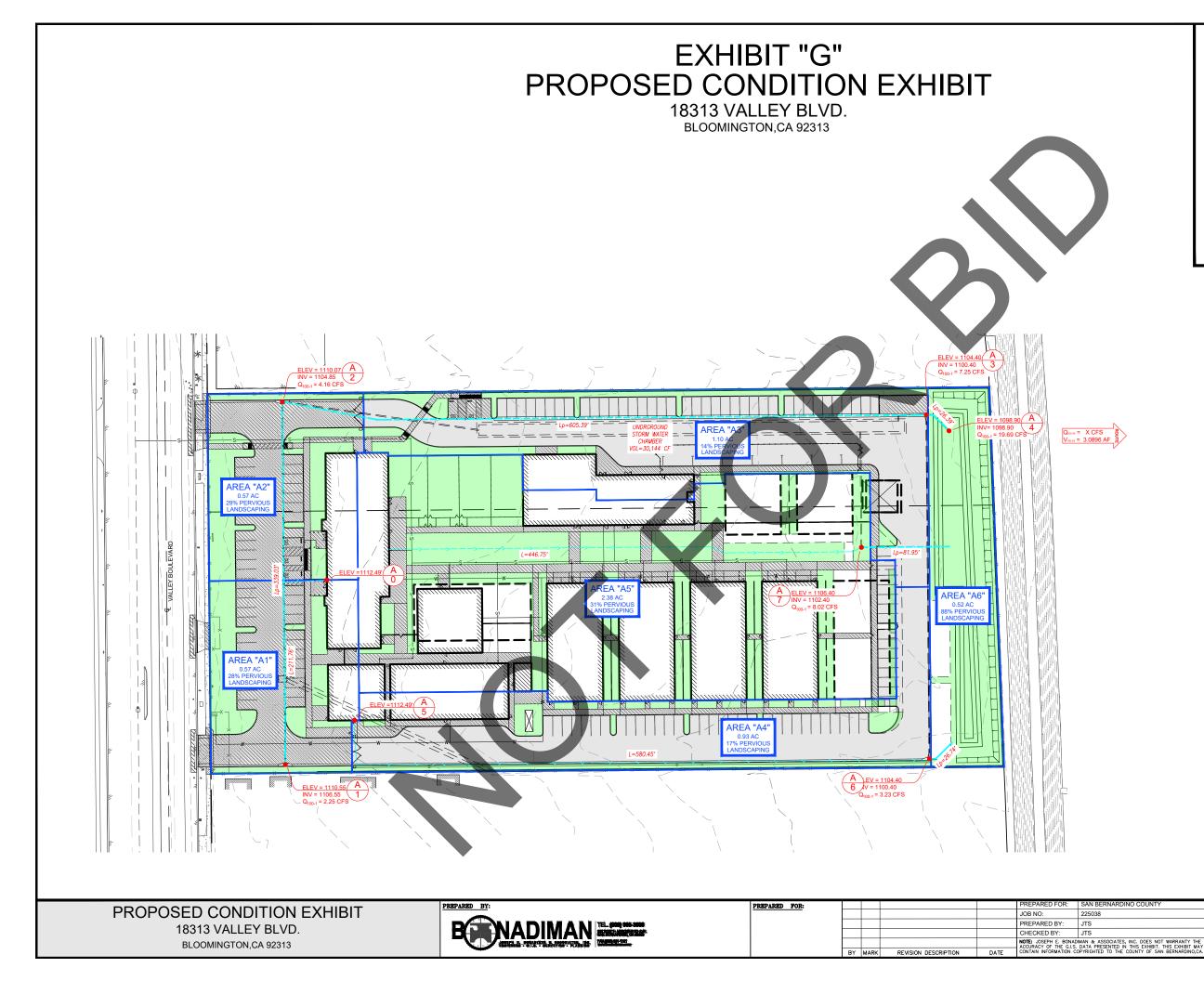

HYDROLOGY MANUAL

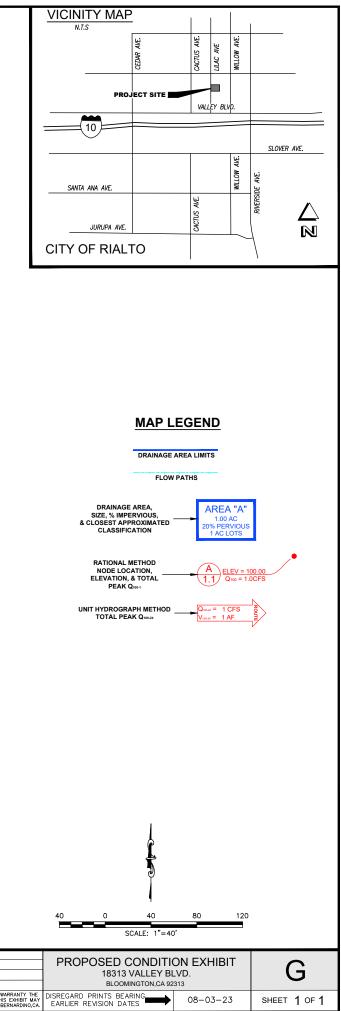

PERVIOUS AREAS

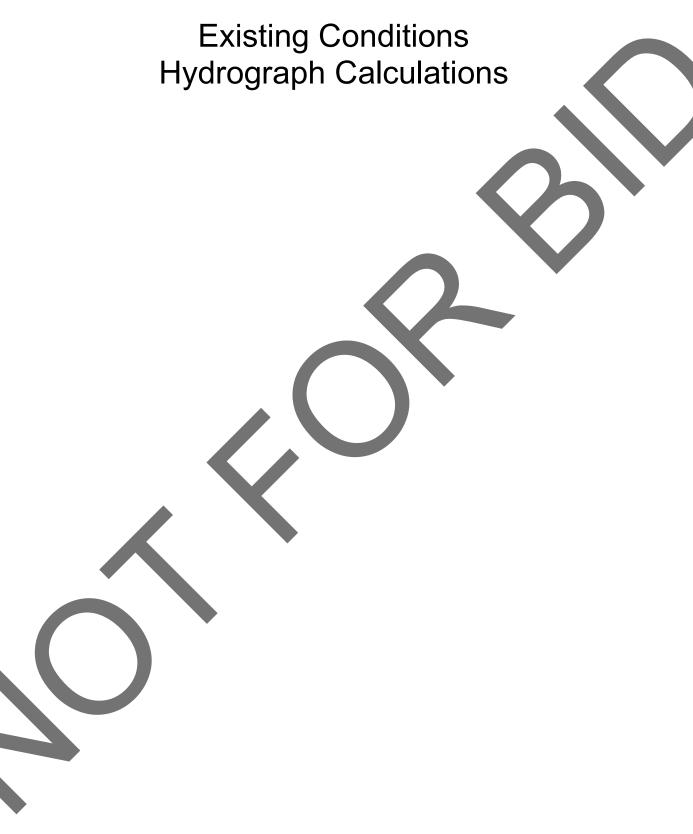

FOR


ACTUAL	IMPER VIO	US COVER	
Land Use (1)	Range	-Percent	Recommended Value For Average Conditions-Percent (2)
Natural or Agriculture	0	- 0	0
Public Park	10	- 25	15
School	30	- 50	40
Single Family Residential: (3)			
2.5 acre lots 1 acre lots 2 dwellings/acre 3-4 dwellings/acre 5-7 dwellings/acre 8-10 dwellings/acre More than 10 dwellings/acre	5 10 20 30 35 50 65	- 15 - 25 - 40 - 50 - 55 - 70 - 90	10 20 30 40 50 60 80
Multiple Family Residential: Condominiums	45	- 70	65
Apartments	65	- 90	80
Mobile Home Park	60	- 85	75
Commercial, Downtown Business or Industrial	80	- 100	90
 Land use should be based on ull range master plans for the Count to insure reasonable land use asset Recommended values are based a particular study area. The per comparable sized lots due to dift Landscape practices should also to use ornamental gravels under lawns and shrubs. A field invest and a review of aerial photos, percentage of impervious cover in 3. For typical equestrian subdivision values recommended in the table 	ty and inc umptions. on average centage in ferences is be consid- lain by imp igation of where ava n develope ns increase	orporated cit e conditions w npervious main dwelling sizered as it is o pervious plasti a study area ilable, may a ed areas.	ies should be reviewed which may not apply to y vary greatly even on ze, improvements, etc. common in some areas ic materials in place of shall always be made, ssist in estimating the
SAN BERNARDINO COU		ACTUAI	L IMPERVIOUS COVER
			FOR
HYDROLOGY MANUAL		DE	VELOPED AREAS


ЭŸ






ATTACHMENT 1

Existing Conditions Rational Method Calculations

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2019 Version 9.1 Rational Hydrology Study Date: 08/04/23 -----225038 - 18313 VALLEY BLVD - SB ANIMAL CARE CENTER EXISITNG CONDITIONS 10-YEAR, 1-HOUR STORM BY: JTS DATE: 08-04-23 _____ Program License Serial Number 6320 _____ ******** Hydrology Study Control Information ********* -----Rational hydrology study storm event year is 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall = 0.920 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 Process from Point/Station 0.000 to Point/Station **** INITIAL AREA EVALUATION **** 1.000 UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 50.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.810(In/Hr) Initial subarea data: Initial area flow distance = 841.000(Ft.) Top (of initial area) elevation = 1113.400(Ft.) Bottom (of initial area) elevation = 1102.200(Ft.) Difference in elevation = 11.200(Ft.) Slope = 0.01332 s(%)= 1.33 TC = $k(0.706)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 24.765 min. Rainfall intensity = 1.564(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.434 Subarea runoff = 4.124(CFS) Total initial stream area = Pervious area fraction = 1.000 6.070(Ac.) Initial area Fm value = 0.810(In/Hr) End of computations, Total Study Area = 6.07 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 50.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2019 Version 9.1 Rational Hydrology Study Date: 08/04/23 -----225038 - 18313 VALLEY BLVD - SB ANIMAL CARE CENTER EXISITNG CONDITIONS 100-YEAR, 1-HOUR STORM BY: JTS DATE: 08-04-23 _____ Program License Serial Number 6320 _____ ******** Hydrology Study Control Information ********* -----Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 0.920(In.) 100 Year storm 1 hour rainfall = 1.320(In.) Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.320 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 0.000 to Point/Station **** INITIAL AREA EVALUATION **** 1.000 UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000Decimal fraction soil group A = 1.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 50.00 Adjusted SCS curve number for AMC 3 = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In/Hr) Initial subarea data: Initial area flow distance = 841.000(Ft.) Top (of initial area) elevation = 1113.400(Ft.) Bottom (of initial area) elevation = 1102.200(Ft.) Difference in elevation = 11.200 (Ft.) Slope = 0.01332 s(%) = 1.33TC = k(0.706)*[(length^3)/(elevation change)]^0.2Initial area time of concentration = 24.765 min. Rainfall intensity = 2.245(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.687 Subarea runoff = 9.354(CFS) Total initial stream area = 6.070(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In/Hr) End of computations, Total Study Area = 6.07 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 50.0

ATTACHMENT 2

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 08/04/23 San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6320 225038 - 18313 VALLEY BLVD - SB ANIMAL CARE CENTER EXISITNG CONDITIONS 2-YEAR, 24-HOUR STORM BY: JTS DATE: 08-04-23 Storm Event Year = 2 Antecedent Moisture Condition = 1 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-Area Duration Isohyeta Isohyetal (Ac.) (hours) (In) Rainfall data for year 10 6.07 0.92 1 Rainfall data for year 2 1.62 6.07 6 _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ Rainfall data for year 2 6.07 24 3.01 ------ - -. Rainfall data for year 100 6.07 1.32 **,** _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Rainfall data for year 100 6.07 6 3.50 -----Rainfall data for year 100 24 7.80 6.07 ******* Area-averaged max loss rate, Fm ******* SCS curve SCS curve Area Fp(Fig C6) Fm Area Ар No.(AMCII) NO.(AMC 1) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 50.0 31.0 6.07 1.000 0.983 1.000 0.983 Area-averaged adjusted loss rate Fm (In/Hr) = 0.983

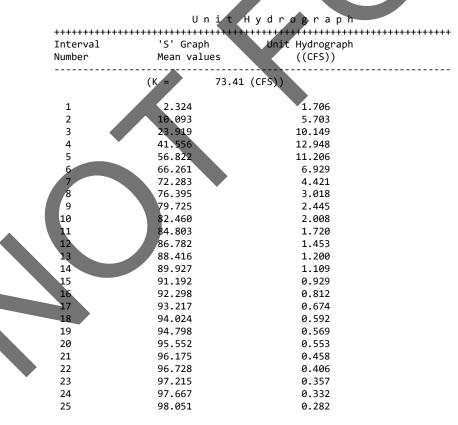
******* Area-Averaged low loss rate fraction, Yb *********

Area	Area	SCS CN	SCS CN	S	Pervious
(Ac.)	Fract	(AMC2)	(AMC1)		Yield Fr
6.07	1.000	50.0	31.0	15.05	0.000

Area-averaged catchment yield fraction, Y = 0.000 Area-averaged low loss fraction, Yb = 1.000 User entry of time of concentration = 0.413 (hours) 6.07(Ac.) Watershed area = Catchment Lag time = 0.330 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 25.2220 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.983(In/Hr) Average low loss rate fraction (Yb) = 1.000 (decimal) VALLEY UNDEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.237(In) Computed peak 30-minute rainfall = 0.485(In) Specified peak 1-hour rainfall = 0.640(In) Computed peak 3-hour rainfall = 1.131(In) Specified peak 6-hour rainfall = 1.620(In) Specified peak 24-hour rainfall = 3.010(In)

Rainfall depth area reduction factors: Using a total area of 6.07(Ac.) (Ref: fig. E-4)

 5-minute factor = 1.000
 Adjusted rainfall = 0.237(In)


 30-minute factor = 1.000
 Adjusted rainfall = 0.485(In)

 1-hour factor = 1.000
 Adjusted rainfall = 0.640(In)

 3-hour factor = 1.000
 Adjusted rainfall = 1.131(In)

 6-hour factor = 1.000
 Adjusted rainfall = 1.620(In)

 24-hour factor = 1.000
 Adjusted rainfall = 3.010(In)

27 99.894 0.207 28 99.395 0.185 29 91.48 0.185 20 109.095 0.185 21 109.090 0.193 22 109.195 0.193 23 0.327 0.977 2 0.327 0.977 3 0.327 0.905 4 0.420 0.0063 7 0.551 0.0053 4 0.421 0.0053 3 0.577 0.0551 4 0.421 0.0053 3 0.576 0.0053 3 0.576 0.0253 3 0.576 0.0253 3 0.673 0.0253 3 0.673 0.0253 3 0.673 0.0254 3 0.6737 0.0254 3 0.6737 0.0254 3 0.6737 0.0254 3 0.6737 0.0254 3 0.6263 0.0264 3 0.6264	26	98.402	0.257			
28 99,3183 0.135 31 99,483 0.135 32 100,000 0.033 Teck Unit Adjusted mass rainfall Unit rainfall Number 1(1) 1(3) 4 0.427 0.077 3 0.327 0.077 3 0.327 0.025 7 0.452 0.026 7 0.452 0.026 9 0.5766 0.025 10 0.5552 0.0265 11 0.6032 0.026 12 0.727 0.025 13 0.6073 0.025 14 0.6332 0.026 15 0.7427 0.025 16 0.7427 0.025 17 0.6244 0.024 18 0.6352 0.026 19 0.6224 0.024 20 0.8552 0.026 21 0.8556 0.024 22 0.957 0.026 23 0.957 0.026 24						
38 99.440 0.185 32 100.000 0.003 Tesk luit: dist rainfall Number 1 0.2370 0.2571 2 0.3127 0.9551 4 0.4111 0.014 5 0.4521 0.023 5 0.4521 0.023 7 0.5511 0.023 8 0.5444 0.023 9 0.5766 0.0263 11 0.6693 0.0271 14 0.6935 0.0271 15 0.7187 0.0252 16 0.7432 0.0271 17 0.6553 0.0271 18 0.6935 0.0271 19 0.7187 0.0252 10 0.7432 0.0241 12 0.6593 0.0271 13 0.6973 0.0271 14 0.6935 0.0241 15 0.7187 0.0252 16 0.7432 0.0241 17 0.8542 0.			0.185			
31 99.663 0.185 Teach Unit Afjusted (15) rainfall Unit (af)fall (16) 1 0.277 0.277 3 0.3077 0.6057 3 0.3077 0.6051 4 0.4126 0.6448 5 0.4511 0.6385 6 0.4484 0.6385 7 0.5524 0.6311 8 0.5766 0.6231 10 0.5982 0.6231 11 0.6483 0.6231 12 0.6482 0.6231 13 0.6595 0.6231 14 0.6693 0.6231 15 0.7482 0.6241 17 0.7680 0.6231 18 0.7895 0.6231 19 0.8154 0.6193 21 0.9557 0.6193 22 0.9557 0.6193 23 0.9557 0.6193 24 0.9162 0.6151 35 1.1493 0.6161 36 1.1493 0.6161						
12 100.000 0.033 Peak Unit Adjusted mass mainfall Unit mainfall Mainfall 1 1 0.132 0.0757 3 0.3677 0.0551 4 0.4126 0.0425 5 0.4511 0.0485 6 0.4582 0.0341 7 0.5161 0.0485 8 0.5444 0.2031 13 0.6692 0.021 14 0.6353 0.021 13 0.6693 0.0221 14 0.6352 0.0245 15 0.7367 0.0251 16 0.6383 0.0221 17 0.7467 0.0252 18 0.6492 0.0214 19 0.8124 0.0224 20 0.8342 0.0214 21 0.8556 0.0214 22 0.8365 0.0214 23 0.8055 0.0192 24 0.755 0.0192						
Test Adjusted mass rainfall Unit rainfall Number (10) (10) 1 0.327 0.257 3 0.3277 0.0551 4 0.4126 0.4444 5 0.4551 0.4452 6 0.4452 0.4444 7 0.5611 0.893 9 0.5795 0.633 10 0.6932 0.6431 11 0.6493 0.623 12 0.4642 0.623 13 0.6673 0.623 14 0.6937 0.623 15 0.7769 0.623 16 0.7783 0.624 17 0.7689 0.623 18 0.7897 0.624 19 0.8342 0.621 12 0.7782 0.624 13 0.6773 0.8192 14 0.9269 0.623 15 0.7782 0.8192 16 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
Number (1) (1) 1 0.2370 0.2370 2 0.3127 0.6757 3 0.3177 0.6951 4 0.4451 0.4455 6 0.4652 0.8999 7 0.5161 0.9399 8 0.5544 0.6233 9 0.5766 0.2234 11 0.6483 0.221 12 0.64935 0.224 13 0.69355 0.224 14 0.64935 0.221 15 0.737 0.524 16 0.7327 0.224 17 0.7669 0.223 18 0.7289 0.224 20 0.8146 0.219 21 0.6355 0.195 22 0.3365 0.195 23 0.8959 0.224 24 0.335 0.195 25 0.335 0.195 26 0.355 0.1	32	100.000	0.093			
1 0.2370 0.2370 2 0.3127 0.4551 3 0.3677 0.4551 4 0.4124 0.4044 5 0.4112 0.4047 7 0.5161 0.4087 7 0.5161 0.2383 9 0.5766 0.2263 10 0.5952 0.2246 11 0.6133 0.2131 12 0.6402 0.219 13 0.6773 0.6771 14 0.6935 0.2214 15 0.7189 0.2214 16 0.7899 0.2214 17 0.6573 0.6714 18 0.7899 0.224 29 0.8342 0.6224 21 0.83556 0.224 22 0.8356 0.224 23 0.8902 0.4045 24 0.9234 0.4129 25 0.9766 0.4056 26 0.9557 0.4129						
2 0.3127 0.6757 3 0.3677 0.651 4 0.4126 0.4481 5 0.4111 0.4351 6 0.5111 0.4399 7 0.5766 0.4233 9 0.5766 0.4233 10 0.5952 0.246 11 0.6483 0.4219 12 0.6462 0.4219 13 0.6737 0.4221 14 0.7337 0.4221 15 0.737 0.4221 16 0.7337 0.4221 17 0.7669 0.6237 18 0.7895 0.4219 19 0.8124 0.6224 20 0.8142 0.629 21 0.6556 0.6214 22 0.9365 0.714 23 0.9496 0.429 24 0.9596 0.429 25 0.9365 0.714 26 0.9375 0.419 27 0.9746 0.419 28						
3 0.3577 0.8551 4 0.4126 0.444 5 0.4511 0.935 6 0.4852 0.931 7 0.5134 0.939 9 0.9796 0.263 10 0.9592 0.263 11 0.6833 0.221 12 0.6442 0.231 13 0.6673 0.227 14 0.6935 0.224 15 0.7187 0.224 16 0.7387 0.224 17 0.8124 0.224 28 0.824 0.224 29 0.8124 0.224 21 0.8556 0.224 22 0.8765 0.204 23 0.8969 0.204 24 0.219 22 25 0.9136 0.924 26 0.9392 0.936 27 0.9766 0.204 28 0.9159 0.105 29 1.914 9.926 30 1.629 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1					
4 0.4126 0.4483 5 0.4511 0.8385 6 0.4522 0.8385 7 0.5161 0.8289 8 0.5444 0.2231 10 0.553 0.8231 11 0.6673 0.6231 12 0.6692 0.6231 13 0.6673 0.6231 14 0.6935 0.8261 15 0.7187 0.8224 17 0.7660 0.6231 18 0.7999 0.6231 19 0.8354 0.8244 17 0.7660 0.8234 18 0.7875 0.8254 19 0.8355 0.8104 21 0.8765 0.8204 22 0.8765 0.8204 23 0.8956 0.8204 24 0.9169 0.8204 25 0.9355 0.8105 26 0.9557 0.8129 27 0.9464 0.9174 28 0.9324 0.9174						
5 0.431 0.335 6 0.452 0.3341 7 0.5161 0.399 8 0.5766 0.223 9 0.5766 0.223 11 0.1032 0.224 11 0.1032 0.221 13 0.4732 0.223 14 0.7935 0.223 15 0.7422 0.224 16 0.7432 0.223 17 0.7656 0.223 18 0.7899 0.224 20 0.8342 0.224 20 0.8342 0.224 21 0.8526 0.224 22 0.7055 0.2024 23 0.3059 0.2024 24 0.7051 0.2024 25 0.2024 0.2024 26 0.9796 0.2024 27 0.7976 0.2024 28 0.9796 0.2024 29 1.014 0.305 29 1.014 0.305 20 <t< th=""><th>4</th><th></th><th></th><th></th><th></th><th></th></t<>	4					
6 0.4522 0.6341 7 0.5561 0.6223 9 0.5766 0.6223 10 0.5952 0.6246 11 0.6133 0.6211 12 0.6662 0.6213 13 0.6073 0.6211 14 0.6037 0.6211 15 0.7656 0.6223 16 0.7522 0.8244 17 0.7659 0.8221 18 0.7659 0.8221 19 0.8124 0.6224 21 0.8555 0.6224 22 0.8555 0.6224 23 0.8969 0.6204 24 0.9152 0.1165 25 0.9355 0.6192 26 0.9357 0.6192 27 0.7746 0.6192 28 0.9352 0.1165 39 1.6033 0.1170 31 1.4669 0.1170 33 1.6932 0.1162 34 1.9932 0.1612	5					
8 0.5444 0.223 9 0.5766 0.223 11 0.683 0.231 12 0.6462 0.221 13 0.6673 0.221 14 0.6935 0.221 15 0.7187 0.222 16 0.7197 0.222 17 0.7899 0.221 18 0.7197 0.222 19 0.7899 0.221 10 0.7899 0.221 11 0.6556 0.224 12 0.7575 0.224 12 0.7575 0.224 12 0.7575 0.224 13 0.8959 0.2264 14 0.9556 0.924 15 0.9365 0.9152 16 0.9375 0.9152 17 0.9765 0.9264 18 0.9162 19 0.1141 10 0.9174 11 0.9669 11 0.9676 11 0.9162 12 0.9746 13 0.9162 14 0.9162 15 1.1494 16 0.9159 <	6					
9 0.5766 0.6233 10 0.5952 0.6224 11 0.6133 0.6221 12 0.6402 0.6221 13 0.6673 0.6221 14 0.6935 0.6221 15 0.7187 0.6252 16 0.7432 0.6224 17 0.7669 0.6221 18 0.7899 0.6221 19 0.6251 0.6251 10 0.6251 0.6251 11 0.6555 0.6224 12 0.6555 0.6224 13 0.6556 0.6224 14 0.6224 15 0.7365 0.6234 16 0.6355 0.6234 17 0.7659 0.6234 18 0.9577 0.9195 19 0.6355 0.9195 19 0.6355 0.9195 20 0.9746 0.9195 21 0.6957 0.9195 22 1.6233 0.6176 23 1.6673 0.61276 24 1.9593 0.8156 35 1.169 0.6162 36 1.113 0.8162 37 1.1243 0.6156 36 1.1213 0.6156 37 1.1243 0.6156 38 1.1244 0.6156 39 1.1727 0.6142 43 1.2923 0.6132 44 1.2523 0.6132 45 1.6433 0.6136 46 1.1213 0.6142	7					
10 0.9552 0.8236 11 0.6402 0.6231 12 0.6402 0.6271 14 0.6935 0.6251 15 0.7137 0.6252 16 0.7432 0.6237 18 0.7899 0.6237 19 0.8124 0.6224 20 0.8142 0.6224 20 0.8142 0.6224 21 0.8755 0.6224 22 0.8755 0.6224 23 0.8755 0.6224 24 0.9169 0.6224 25 0.9355 0.6264 24 0.9169 0.6264 25 0.9355 0.6165 26 0.9357 0.6126 27 0.9746 0.6185 28 0.9392 0.6186 31 1.643 0.6176 32 1.643 0.6176 33 1.643 0.6176 34 1.643 0.6164 35 1.149 0.6164 36 1.149 0.6164 37 1.149 0.6164 38 1.149 0.6164 39 1.149 0.6164						
11 0.6183 0.6231 12 0.6462 0.6219 13 0.673 0.6271 14 0.6935 0.6261 15 0.7187 0.6252 16 0.7432 0.6244 17 0.7669 0.6331 19 0.8124 0.6224 20 0.8342 0.6224 21 0.8356 0.6214 23 0.8356 0.6214 24 0.6224 25 0.9557 0.9139 26 0.9557 0.9139 27 0.9766 0.6374 28 0.9932 0.6156 29 0.6179 21 0.6262 29 0.6174 20 0.6176 21 0.6166 22 0.6166 23 0.6179 24 0.6176 25 0.6156 36 0.1174 31 0.6166 35 1.149 36 0.6166 36 0.1123 39 0.6179 31 0.6164 32 1.6423 33 0.6179 34 1.0693 35 1.1496 36 0.6166 37 1.0275 38 1.1630 39 0.6179 39 1.2233 30 0.6176 31 0.6164 32 1.6433 33 0.6176 34 0.6166 35 1.1434 46 0.6156						
12 0.6402 0.6219 13 0.677 0.6221 14 0.6935 0.6251 15 0.7387 0.6252 16 0.7432 0.6234 17 0.7669 0.6231 18 0.7899 0.6224 20 0.8342 0.6219 21 0.8556 0.6204 22 0.8765 0.6204 23 0.8695 0.6204 24 0.9169 0.6204 25 0.9365 0.6204 24 0.9169 0.6204 25 0.9365 0.6106 26 0.9557 0.6102 27 0.9746 0.6102 28 0.9952 0.6105 29 1.0114 0.6105 21 1.6493 0.6176 22 1.6413 0.6176 23 1.6493 0.6176 24 0.9952 0.6166 25 1.149 0.6166 26 1.113 0.6162 27 1.0643 0.6176 28 1.113 0.6162 29 1.014 0.9164 30 1.173 0.9164						
13 0.6673 0.6271 14 0.633 0.6261 15 0.7187 0.6223 16 0.7332 0.6241 17 0.7669 0.6231 18 0.7899 0.6224 19 0.8124 0.6224 21 0.8556 0.6214 22 0.7655 0.6264 23 0.8969 0.6224 24 0.9169 0.6264 25 0.9365 0.6195 26 0.9557 0.6195 27 0.9746 0.6189 28 0.9332 0.6185 29 1.0114 0.6176 31 1.4649 0.6176 32 1.643 0.6176 33 1.0674 0.6186 36 1.1149 0.6176 37 1.142 0.6162 38 1.1054 0.6162 39 1.1792 0.6162 39 1.1792 0.6154 40 1.2253 0.6154						
14 0.6935 0.0251 15 0.7187 0.0252 16 0.7432 0.0244 17 0.7669 0.0231 18 0.7899 0.0214 20 0.8342 0.0219 21 0.8556 0.0224 22 0.8765 0.0294 23 0.9696 0.0244 24 0.169 0.0204 25 0.3365 0.0196 26 0.9557 0.0192 27 0.9746 0.0192 28 0.9932 0.0156 29 1.0114 9.0156 29 1.0114 9.0156 30 1.0293 0.0179 31 1.0469 0.0179 32 1.0643 0.0179 33 1.0293 0.0179 34 1.9933 0.0179 35 0.1140 0.0160 36 1.0213 0.0179 37 1.0469 0.0161 38 1.0149 0.0160						
15 0.7187 0.0252 16 0.7432 0.0244 17 0.7669 0.0237 18 0.7899 0.0214 19 0.8124 0.0224 20 0.8342 0.0214 21 0.8556 0.0214 22 0.8765 0.0204 23 0.8969 0.0204 24 0.9169 0.0204 25 0.9355 0.0195 26 0.9557 0.0195 27 0.9746 0.0189 28 0.99932 0.0176 31 1.0469 0.0176 32 1.6974 0.0166 33 1.0674 0.0176 34 1.0983 0.0166 35 1.1149 0.0166 36 1.113 0.0167 37 1.4046 0.0160 39 1.1792 0.0158 40 1.948 0.0156 41 1.948 0.0156 42 1.2233 0.0152			0.0261		*	
17 0.7669 0.6237 18 0.7899 0.6231 19 0.8124 0.6224 20 0.8556 0.6214 21 0.8556 0.6224 22 0.8765 0.6294 23 0.8969 0.6284 24 0.9159 0.6294 25 0.9365 0.6196 26 0.9766 0.6189 27 0.9746 0.6189 28 0.9332 0.6189 29 1.0114 0.6162 30 1.0293 0.6179 31 1.0469 0.6176 32 1.043 0.6174 33 1.0614 0.6176 34 1.9893 0.6166 36 1.113 0.6164 36 1.1149 0.6164 37 1.1472 0.6158 40 1.1948 0.6156 41 1.252 0.6164 38 1.1674 0.6156 42 1.2649 0.6158	15	0.7187	0.0252			
18 0.7899 0.8214 19 0.8124 0.0224 20 0.8342 0.0219 21 0.8556 0.0249 22 0.8765 0.0204 23 0.8969 0.0204 24 0.9169 0.0204 25 0.9365 0.0196 26 0.9557 0.0192 27 0.9746 0.0189 28 0.9332 0.0179 31 1.0463 0.0174 33 1.0474 0.0174 34 1.0983 0.0174 35 1.149 0.0166 36 1.149 0.0164 37 1.149 0.0164 38 1.1644 0.0156 39 1.1792 0.0158 40 1.1948 0.0156 42 1.2523 0.0152 43 1.2699 0.0154 42 1.2523 0.0152 43 1.2699 0.0154 44 1.2523 0.0152						
19 0.8124 0.8224 20 0.8556 0.8214 21 0.8556 0.8244 23 0.8069 0.8284 24 0.9169 0.8284 25 0.9365 0.9196 26 0.9557 0.8199 27 0.9746 0.8199 28 0.9932 0.8169 29 1.0114 0.6162 30 1.0293 0.6179 31 1.0469 0.8176 32 1.043 0.6174 33 1.0514 0.6164 34 1.9993 0.8169 35 1.149 0.8166 36 1.113 0.8164 36 1.1213 0.8164 37 1.1425 0.8169 38 1.1634 0.8169 39 1.1792 0.8158 40 1.949 0.8156 41 1.252 0.8169 42 1.2644 0.8156 43 1.2649 0.8152						
20 0.8342 0.0214 21 0.8355 0.0201 22 0.8755 0.0201 23 0.8959 0.0201 24 0.9169 0.0201 25 0.9365 0.9192 26 0.9357 0.0192 27 0.9746 0.0192 28 0.9932 0.0179 31 1.0469 0.0179 31 1.0463 0.0179 33 1.0674 0.0179 34 1.09933 0.0160 35 1.149 0.0160 36 1.1492 0.0171 36 1.0624 0.0160 37 1.1495 0.0160 38 1.1292 0.0161 39 1.1792 0.0162 38 1.1201 0.0150 440 1.1948 0.0150 441 1.1948 0.0150 442 1.2550 0.0141 443 1.2550 0.0141 444 1.2550 0.0142						
21 0.8556 0.0214 22 0.8765 0.0204 23 0.8669 0.0204 24 0.9169 0.0204 25 0.3363 0.0196 26 0.9557 0.0192 27 0.9746 0.0182 28 0.9932 0.0176 30 1.0293 0.0176 31 1.04469 0.0176 32 1.0643 0.0176 33 1.0674 0.0162 34 1.09983 0.0166 35 1.1430 0.0164 37 1.1475 0.0162 38 1.1984 0.0156 39 1.1792 0.0156 40 1.1948 0.0156 41 1.2101 0.0156 42 1.2699 0.0144 48 1.3131 0.0144 49 1.3222 0.0144 49 1.331 0.0144 49 1.331 0.0144 49 1.331 0.0144						
22 0.8765 0.0204 23 0.8969 0.0204 24 0.9169 0.0204 25 0.9365 0.0192 27 0.9746 0.0189 28 0.9932 0.0187 29 1.0114 9.0182 29 1.0114 9.0182 31 1.0469 0.0179 31 1.0469 0.0179 32 1.0643 0.0179 33 1.0614 0.0171 34 1.0983 0.0166 35 1.149 0.0166 36 1.131 0.0166 38 1.0792 0.0152 40 1.1948 0.0152 41 1.2123 0.0152 43 1.2999 0.0141 44 1.2552 0.0142 45 1.299 0.0142 46 1.3131 0.0142 47 1.2845 0.0142 48 1.3131 0.0142 49 1.3272 0.0141 46 1.3381 0.0142 47 1.2885 0.0142 48 1.3131 0.0142 49 1.3372 0.0138 50 1.4020 0.0138 55 1.4090 0.0138 55 1.4090 0.0138 55 1.4090 0.0138 55 1.4090 0.0138 55 1.4090 0.0138 55 1.4090 0.0138 55 1.4090 0.0138 55 1.4033 0.013						
23 0.8969 0.0204 24 0.9169 0.0204 25 0.9365 0.0192 26 0.9557 0.0192 27 0.9746 0.0125 28 0.932 0.0185 29 1.0114 0.0162 30 1.0293 0.0176 31 1.0449 0.0176 32 1.0643 0.0176 33 1.0434 0.0174 34 1.0933 0.0176 35 1.1149 0.0164 36 1.1313 0.0164 37 1.1405 0.0164 38 1.054 0.0164 39 1.1792 0.0158 40 1.1948 0.0156 41 1.2253 0.0152 43 1.2552 0.0149 44 1.2552 0.0149 45 1.2699 0.0147 46 1.331 0.0142 47 1.2938 0.0142 48 1.3131 0.0142 49 1.3272 0.0138 52 1.3687 0.0138 53 1.3822 0.0136 54 1.3957 0.0136 55 1.4090 0.0138 56 1.4022 0.0138 57 1.4353 0.0130						
24 0.9160 0.6206 25 0.9365 0.9196 26 0.9557 0.6129 27 0.9746 0.6128 28 0.9932 0.026 30 1.6233 0.6179 31 1.0469 0.6176 32 0.6433 0.6174 33 1.0614 0.6171 34 1.0983 0.6179 35 1.1149 0.6166 36 1.1313 0.0166 36 1.1313 0.0166 38 1.1048 0.0156 40° 1.1948 0.0154 40° 1.1948 0.0154 41° 1.2253 0.0152 43 1.2699 0.0141 45 1.2552 0.0141 48 1.311 0.0141 48 1.311 0.0141 48 1.3131 0.0141 48 1.3311 0.0141 45 1.2552 0.0141 46 1.3272 0.0141 58 1.4483 0.0136 55 1.4090 0.0133 56 1.4222 0.0132 57 1.4353 0.0131 58 1.4483 0.0131 58 1.4483 0.0131			0.0204	· · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	0.9169	0.0200			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
28 0.932 0.018 29 1.0114 0.0176 30 1.0293 0.0179 31 1.0469 0.0174 32 1.0643 0.0174 33 1.0614 0.0174 34 1.0983 0.0169 35 1.1149 0.0166 36 1.1131 0.0164 37 1.1475 0.0162 38 1.1624 0.0166 39 1.1792 0.0188 40 1.1248 0.0156 41 1.2253 0.0152 43 1.2494 0.0156 44 1.2552 0.0147 45 1.2599 0.0144 44 1.2592 0.0144 45 1.2372 0.0144 48 1.3131 0.0142 49 1.3272 0.0141 48 1.3596 0.0137 53 1.3422 0.0133 54 1.3957 0.0133 55 1.4483 0.0133 56 1.4222 0.0133 56 1.4423 0.0131						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0189			
			0.0185			
31 1.0469 0.0176 32 1.0643 0.0174 33 1.06174 0.0171 34 1.0983 0.0166 35 1.1149 0.1016 36 1.1313 0.0164 37 1.1475 0.0160 38 1.1792 0.0154 40 1.1948 0.0154 41 1.2253 0.0154 42 1.2253 0.0154 43 1.2699 0.0147 45 1.2699 0.0147 46 1.2845 0.0147 47 1.2845 0.0147 48 1.3131 0.0142 49 1.3272 0.0141 58 1.3411 0.0142 48 1.3311 0.0142 58 1.3411 0.0140 51 1.3550 0.0137 53 1.3822 0.0136 54 1.3957 0.0137 53 1.3822 0.0132 56 1.4222 0.0133			0.0132			
32 1.0643 0.0174 33 1.0874 0.0160 34 1.9983 0.0160 35 1.1149 0.0162 36 1.1313 0.0162 38 1.1034 0.0160 39 1.1792 0.0156 40 1.1948 0.0156 41 1.2101 0.0154 42 1.2253 0.0150 44 1.2552 0.0149 45 1.2699 0.0147 46 1.2988 0.0142 47 1.2895 0.0141 58 1.3411 0.0142 49 1.3272 0.0141 58 1.3822 0.0137 53 1.3822 0.0137 53 1.3822 0.0136 54 1.3957 0.0132 55 1.4090 0.0133 56 1.4222 0.0131 57 1.4353 0.0131						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34		0.0169			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35		0.0166			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1.1313				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 20	1, 1792				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.2101				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1.2253	0.0152			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.3131				
50 1.3411 0.0140 51 1.3550 0.0138 52 1.3687 0.0137 53 1.3822 0.0136 54 1.3957 0.0134 55 1.4090 0.0133 56 1.4222 0.0132 57 1.4353 0.0131 58 1.4483 0.0130	49					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1.3411				
53 1.3822 0.0136 54 1.3957 0.0134 55 1.4090 0.0133 56 1.4222 0.0132 57 1.4353 0.0131 58 1.4483 0.0130	51	1.3550	0.0138			
54 1.3957 0.0134 55 1.4090 0.0133 56 1.4222 0.0132 57 1.4353 0.0131 58 1.4483 0.0130	52	1.3687				
55 1.4090 0.0133 56 1.4222 0.0132 57 1.4353 0.0131 58 1.4483 0.0130	53					
56 1.4222 0.0132 57 1.4353 0.0131 58 1.4483 0.0130						
57 1.4353 0.0131 58 1.4483 0.0130	55					
58 1.4483 0.0130	50 57					

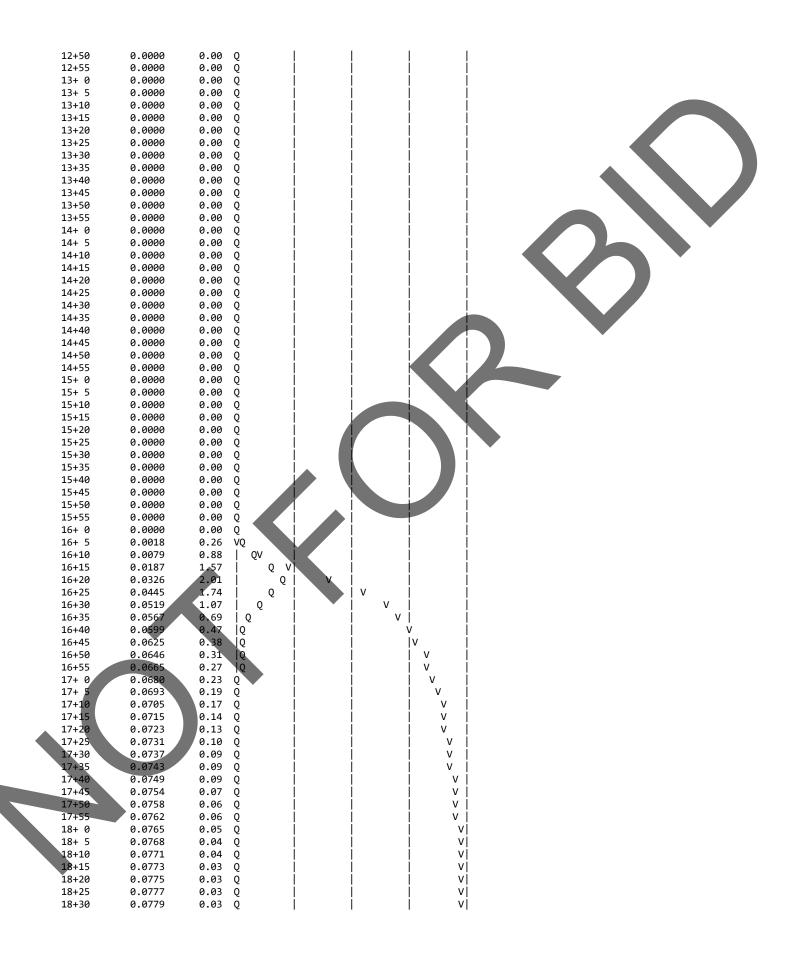
60	1.4740	0.0128		
61	1.4867	0.0127		
62	1.4992	0.0126		
63	1.5117	0.0125		
64	1.5241	0.0124		
65	1.5364	0.0123		
66	1.5486	0.0122		
67	1.5607	0.0121		
		0.0121		
68	1.5727	0.0120		
69	1.5846	0.0119		
70	1.5965	0.0119		
71	1.6083	0.0118		
72	1.6200	0.0117		
73	1.6300	0.0100		
73				
74	1.6399	0.0099		
75	1.6498	0.0099		
76	1.6596	0.0098		
77	1.6693	0.0097		
78	1.6790	0.0097		
79	1.6886	0.0096		
80				
	1.6981	0.0095		
81	1.7075	0.0095		
82	1.7169	0.0094		
83	1.7262	0.0093		
84	1.7355	0.0093		
85	1.7447	0.0092	_	
86	1.7538	0.0091		
87	1.7629	0.0091		
88	1.7720	0.0090		
89	1.7809	0.0090		
90	1.7898	0.0089		
91	1.7987	0.0089		
92	1.8075	0.0088		
93		0.0088		
	1.8163			
94	1.8250	0.0087		
95	1.8336	0.0087		
96	1.8422	0.0086		
97	1.8508	0.0086		
98	1.8593	0.0085		
99	1.8677	0.0085		
100	1.8761	0.0084		
101	1.8845	0.0084		
102	1.8928	0.0083		
103	1.9011	0.0083		
104	1,9093	0.0082		
105	1.9175	0.0082		
106	1.9256	0.0081		
107	1.9337	0.0081		
108	1.9418	0.0081		
109	1.9498	0.0080		
110	1.9578	0.0080		
111	1.9657	0.0079		
112	1.9736	0.0079		
113	1.9815	0.0079		
114	1,9893	0.0078		
115	1.9971	0.0078		
116	2.0048	0.0077		
117	2.0125	0.0077		
118	2.0202	0.0077		
119	2.0278	0.0076		
120	2.0354	0.0076		
121	2.0430	0.0076		
122	2.0505	0.0075		
123	2.0580	0.0075		
124	2.0654	0.0075		
125	2.0729	0.0074		
126	2.0803	0.0074		
120	2.0876	0.0074		
128	2.0950	0.0073		

129	2.1023	.0073		
130	2.1095	.0073		
131	2.11695	.0072		
132	2.1240	.0072		
133	2.1311	.0072		
134	2.1383	.0071		
135	2.1454	.0071		
136	2.1525	.0071		
137	2.1596	.0071		
138	2.1666	.0070		
139	2.1736	.0070		
140	2.1806	.0070		
141	2.1875	.0069		
142	2.1944	.0069		
143	2.2013	.0069		
144	2.2082	.0069		
145	2.2150	.0068		
146	2.2218	.0068		
147	2.2286	.0068		
148	2.2354	.0068		
149	2.2421	.0067		
	2.2421	.0067		
150				
151	2.2555	.0067	•	
152	2.2622	.0067		
153	2.2688	.0066		
154	2.2754	.0066		
155	2.2820	.0066		
156	2.2886	.0066	-	
157	2.2951	.0065		
158	2.3017	.0065		
159	2.3082	.0065		
160	2.3146	.0065		
161	2.3211	.0065		
162	2.3275	.0064		
163	2.3339	.0064		
164	2.3403	.0064		
165	2.3467	.0064		
166	2.3530	.0063		
167	2.3594	.0063		
168	2.3657	.0063		
169	2.3719	.0063		
170	2.3782	.0063		
171	2.3845	.0062		
172	2.3907	.0062		
172	2.3969	.0062		
	2.4031	.0002		
174	2,4003	.0062		
175	2.4092	.0062		
176	2.4154	.0061		
177	2.4215	.0061		
178	2.4276	.0061		
179	2.4337	.0061		
	2.4397	.0061		
181	2.4458	.0060		
182	2.4518	.0060		
183	2.4578	.0060		
184	2.4638	.0060		
185	2.4698	.0060		
186	2.4758	.0060		
187	2.4817	.0059		
188	2.4876	.0059		
189	2.4935	.0059		
190	2.4994	.0059		
191	2.5053	.0059		
192	2.5111	.0059		
193	2.5170	.0058		
194	2.5228	.0058		
195	2.5286	.0058		
196	2.5344	.0058		
197	2.5401	.0058		
/				

	198	2.5459	0.0058		
	199	2.5516	0.0057		
	200	2.5574	0.0057		
	201	2.5631	0.0057		
	202	2.5688	0.0057		
	202	2.5744	0.0057		
	204	2.5801	0.0057		
	205	2.5857	0.0056		
	206	2.5914	0.0056		
	207	2.5970	0.0056		
	208	2.6026	0.0056		
	209	2.6082	0.0056		
	210	2.6137	0.0056		
	211	2.6193	0.0056		
	212	2.6248	0.0055		
	213	2.6304	0.0055		
	214	2.6359	0.0055		
	215	2.6414	0.0055		
	216	2.6468	0.0055		
	217	2.6523	0.0055		
	218	2.6578	0.0055		
	219	2.6632	0.0054		
	220	2.6686	0.0054		
	221	2.6741	0.0054		
	222	2.6795	0.0054		
	223	2.6848	0.0054		
	224	2.6902	0.0054		
	225	2.6956	0.0054		
	226	2.7009	0.0053		
	227	2.7063	0.0053		
	228	2.7116	0.0053		
	229	2.7169	0.0053		
	230	2.7222	0.0053	· · · ·	
	231	2.7275	0.0053		
	232	2.7327	0.0053		
	233	2.7380	0.0053		
	234	2.7432	0.0052		
	235	2.7485	0.0052		
	236	2.7537	0.0052		
	237	2.7589	0,0052		
	238	2.7641	0.0052		
	239	2.7693	0.0052		
	240	2.7745	0.0052		
	240	2.7796	0.0052		
	242	2,7848	0.0051		
	242	2.7899	0.0051		
	243	2.7950	0.0051		
	244 245	2.8001	0.0051		
	245 246	2.8001			
	246 247		0.0051 0.0051		
	247	2.8103			
	248	2.8154 2.8205	0.0051 0.0051		
	249	2.0200			
	250	2.8255	0.0051		
	251	2.8306	0.0050		
	252 253	2.8356	0.0050		
	253	2.8406	0.0050		
	254	2.8456	0.0050		
	255	2.8506	0.0050		
	256	2.8556	0.0050		
	257	2.8606	0.0050		
	258	2.8656	0.0050		
	259	2.8705	0.0050		
	260	2.8755	0.0049		
	261	2.8804	0.0049		
	262	2.8854	0.0049		
	263	2.8903	0.0049		
*	264	2.8952	0.0049		
	265	2.9001	0.0049		
	266	2.9050	0.0049		

267 2.9988 0.9049 268 2.9147 0.9049 279 2.9244 0.9048 271 2.9341 0.9048 273 2.9391 0.9048 274 2.9341 0.9048 275 2.9345 0.9048 276 2.9353 0.9048 277 2.9588 0.9048 277 2.9598 0.9048 277 2.9593 0.9048 277 2.9598 0.9048 278 2.9676 0.9047 288 2.9771 0.9047 281 2.9832 0.9047 282 2.9832 0.9047 283 2.9832 0.9047 284 2.9832 0.9047 285 3.9199 0.9047 286 3.9199 0.9047 287 3.9035 0.9047 286 0.9047 0.9095 29 0.9047 0.9096 2 0.9047 0.9096 29 0.9047 0.9096 <th></th> <th></th> <th></th> <th></th>				
268 2.9147 0.0499 279 2.9244 0.0445 271 2.9244 0.0445 272 2.9341 0.0445 273 2.9339 0.0445 274 2.9437 0.0445 275 2.9435 0.0445 276 2.9533 0.0445 277 2.9528 0.0445 278 2.9528 0.0445 280 2.9723 0.0445 281 2.9773 0.0647 282 2.9818 0.0427 284 2.9912 0.0647 285 2.9953 0.0647 286 3.0406 0.0647 10 0.047 0.0647 286 3.0406 0.0647 287 3.0426 0.0647 288 3.0407 0.0647 29 0.0647 0.0647 20 0.0647 0.0647 21 0.0647 0.0647 287 3.0403 0.0647 20 0.0647 0.0647	267	2.9098	0.0049	
269 2.1306 0.0403 270 2.3224 0.0404 271 2.3231 0.0404 273 2.3339 0.0404 274 2.4457 0.0404 275 2.4455 0.0404 277 2.9580 0.0404 279 2.9576 0.0404 279 2.9576 0.0404 279 2.9576 0.0404 280 2.9771 0.0607 281 2.9939 0.0407 282 2.9939 0.0407 283 2.9939 0.0407 284 2.9939 0.0407 285 2.9939 0.0407 286 3.0606 0.0407 1 0.4047 0.0407 1 0.4047 0.0407 1 0.4047 0.0407 2 0.4047 0.0407 2 0.4047 0.0407 2 0.4047 0.0407 2 0.4047 0.0407 2 0.4047 0.0406				
270 2.9244 0.0048 271 2.9341 0.0048 273 2.939 0.0048 274 2.9437 0.0048 275 2.9455 0.0048 276 2.9533 0.0048 277 2.9568 0.0048 278 2.9678 0.0047 280 2.9773 0.0047 281 2.9771 0.0047 283 2.9912 0.0047 286 2.9912 0.0047 286 3.0055 0.0047 286 3.0095 0.0047 287 3.0053 0.0047 286 3.0109 0.0047 1 0.0047 0.00047 287 0.0047 0.0008 3 0.0047 0.00047 286 0.0047 0.00047 287 0.0047 0.0008 3 0.0047 0.0008 4 0.0047 0.0008 5 0.0047 0.0008 6 0.0047 0.0008				
271 2.9292 0.0048 272 2.9389 0.0048 273 2.9389 0.0048 275 2.9485 0.0048 277 2.9580 0.0048 277 2.9580 0.0048 278 2.9676 0.0048 279 2.9676 0.0047 281 2.9771 0.0047 282 2.9865 0.0047 283 2.9959 0.0047 285 2.9959 0.0047 286 3.0060 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 1 0.0047 0.0006 1 0.0047 0.0007 288 3.0100 0.0047 289 0.0047 0.0006 2 0.0047 0.0006 1 0.0047 0.0006 2 0.0047 0.0006 2 0.0047 0.0006 3 0.0047 0.0006 4 0.0047 0.0006				
272 2.9341 0.0048 273 2.9339 0.0048 274 2.9437 0.0048 275 2.9437 0.0048 276 2.9533 0.0048 277 2.9528 0.0048 278 2.9628 0.0047 280 2.9773 0.0047 281 2.9773 0.0047 283 2.9912 0.0047 285 2.9912 0.0047 286 3.0006 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 287 3.0047 0.0047 288 3.0100 0.0047 287 3.0047 0.0047 288 3.0100 0.0047 289 0.0047 0.0047 280 0.0047 0.0047 281 0.0047 0.0047 283 0.0047 0.0047 284 0.0047 0.0047 287 3.0047 0.0049 10 0.0047 0.0049<				
273 2.9389 0.0048 275 2.9485 0.0048 275 2.9485 0.0048 277 2.9580 0.0048 277 2.9580 0.0048 278 2.9676 0.0048 279 2.9676 0.0047 281 2.9771 0.0047 282 2.9365 0.0047 283 2.9959 0.0047 285 2.9959 0.0047 286 3.0053 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 287 3.0053 0.0047 1 0.0047 0.0047 1 0.0047 0.0047 1 0.0047 0.0047 2 0.0047 0.0047 2 0.0047 0.0047 3 0.0047 0.0047 4 0.0047 0.0046 5 0.0047 0.0047 6 0.0047 0.0046 6 0.0047 0.0006				
274 2.9437 0.0048 275 2.9438 0.0048 276 2.9533 0.0048 277 2.9528 0.0048 278 2.9628 0.0049 280 2.9723 0.0047 281 2.9771 0.0047 282 2.9818 0.0047 283 2.9952 0.0047 284 2.9912 0.0047 285 2.9953 0.0047 286 3.0090 0.0047 287 3.0090 0.0047 288 3.0190 0.0047 287 3.0001 0.0001 1 0.0047 0.0047 288 3.0190 0.0047 29 0.0047 0.0047 20 0.0047 0.0047 20 0.0047 0.0047 20 0.0047 0.0047 30 0.0047 0.0048 4 0.0047 0.0046 5 0.0047 0.0046 6 0.0047 0.0046 <td></td> <td></td> <td></td> <td></td>				
275 2.9485 0.0048 277 2.9580 0.0048 278 2.9675 0.0048 279 2.9676 0.0048 280 2.9771 0.0047 281 2.9771 0.0047 282 2.9818 0.0047 283 2.9939 0.0047 284 2.9939 0.0047 285 2.9939 0.0047 286 3.0006 0.0047 287 3.0063 0.0047 288 3.0100 0.0047 287 3.0063 0.0047 288 3.0100 0.0047 289 0.0047 0.0047 20 0.0047 0.0047 2 0.0047 0.0048 3 0.0047 0.0048 4 0.0047 0.0048 5 0.0047 0.0048 6 0.0047 0.0048 7 0.0048 0.0048 7 0.0048 0.0048 11 0.0048 0.0048				
276 2.9533 0.0048 277 2.9528 0.0043 278 2.9628 0.0043 280 2.9723 0.0047 281 2.9723 0.0047 282 2.9818 0.0047 283 2.9955 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 1 0.0047 0.0047 1 0.0047 0.0047 2 0.0047 0.0047 2 0.0047 0.0047 2 0.0047 0.0047 3 0.0047 0.0020 1 0.0047 0.0020 2 0.0047 0.0020 3 0.0047 0.0020 4 0.0047 0.0020 5 0.0047 0.0020 6 0.0047 0.0020 7 0.0020 0.0020				
277 2.9580 0.0048 278 2.9575 0.0048 280 2.9773 0.0047 281 2.9771 0.0047 282 2.9818 0.0047 283 2.9855 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 287 3.0003 0.0047 288 3.0100 0.0047 1 0.0047 0.0047 287 0.0038 0.0047 288 3.0100 0.0047 1 0.0047 0.0047 1 0.0047 0.0047 2 0.0047 0.0047 3 0.0047 0.0048 4 0.0047 0.0048 5 0.0047 0.0048 6 0.0047 0.0048 7 0.0048 0.0048 1 0.0042 0.0048 1 0.0043 0.0048 2 0.0044 0.0048				
278 2.9628 0.0043 279 2.9576 0.0047 281 2.9713 0.0047 282 2.9818 0.0047 283 2.9955 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0053 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 1 0.0047 0.0047 1 0.0047 0.0047 2 0.0047 0.0047 3 0.0047 0.0047 2 0.0047 0.0047 3 0.0047 0.0047 4 0.0047 0.0048 5 0.0047 0.0048 6 0.0047 0.0048 7 0.0008 0.0008 8 0.0048 0.0008 10 0.0048 0.0008 11 0.0048 0.0008 12 0.0048 0.0008 13 0.0049 0.00008		2.9533	0.0048	
279 2.9676 0.0043 280 2.9723 0.0047 281 2.9771 0.0047 282 2.9818 0.0047 283 2.9959 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 287 3.0653 0.0047 288 3.0100 0.0047 101t Unit Unit Effective Periad Rainfall Solit-Loss Rainfall 1 0.0047 0.0047 0.0006 2 0.0047 0.0047 0.0006 3 0.0047 0.0047 0.0006 4 0.0047 0.0048 0.0006 5 0.0047 0.0048 0.0006 6 0.0048 0.0048 0.0006 7 0.0048 0.0048 0.0006 10 0.0048 0.0048 0.0006 11 0.0048 0.0049 0.0006 12 0.0048 0.0049	277	2.9580	0.0048	
279 2.9676 0.0043 280 2.9723 0.0047 281 2.9711 0.0047 282 2.9818 0.0047 283 2.9959 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 101t Unit Unit Effective Period Rainfall Solit-Loss Rainfall 1 0.0047 0.0047 0.0006 2 0.0047 0.0047 0.0006 3 0.0047 0.0047 0.0006 5 0.0047 0.0047 0.0006 6 0.0047 0.0048 0.0006 7 0.0048 0.0048 0.0006 8 0.0047 0.0006 0.0006 10 0.0048 0.0048 0.0006 12 0.0048 0.0048 0.0006 14 0.0048 0.0049	278	2.9628	0.0048	
280 2.9723 0.0047 281 2.9918 0.0047 283 2.9855 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 286 3.0019 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 1 0.0047 0.0007 1 0.0047 0.0007 2 0.0047 0.0007 2 0.0047 0.0007 3 0.0047 0.0007 4 0.0047 0.0007 5 0.0047 0.0007 6 0.0047 0.0006 7 0.0048 0.0006 8 0.0047 0.0006 10 0.0048 0.0006 12 0.0048 0.0006 13 0.0048 0.0006 14 0.0048 0.0006 15 0.0049 0.0006 16 0.0049 0.00006				
281 2.9771 0.0047 282 2.9865 0.0047 283 2.9959 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 289 0.0047 0.0047 280 0.0047 0.0047 281 0.0047 0.0047 1 0.0047 0.0047 2 0.0047 0.0047 2 0.0047 0.0047 3 0.0047 0.0047 4 0.0047 0.0047 5 0.0047 0.0047 6 0.0047 0.0047 7 0.0043 0.0047 8 0.0043 0.0000 7 0.00448 0.00468 10 0.0048 0.0000 12 0.0048 0.0000 14 0.0049 0.0000 <				
282 2.9818 0.0047 284 2.9912 0.0047 285 2.9959 0.0047 286 3.0005 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 Init Unit Effective Rainfall Colspan="2">Colspan="2" <colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="< td=""><td></td><td></td><td></td><td></td></colspan="2"<colspan="2"<colspan="2"<colspan="<></colspan="2"></colspan="2">				
283 2.9865 0.0047 285 2.9959 0.0047 286 3.0006 0.0047 287 3.0026 0.0047 288 3.0100 0.0047 289 3.0100 0.0047 280 3.0100 0.0047 Unit Unit Unit Effective 1 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 3 0.0047 0.0047 0.0000 5 0.0047 0.0047 0.0000 6 0.0047 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0049 0.0000 14 <td></td> <td></td> <td></td> <td></td>				
284 2.9912 0.0047 285 2.9959 0.0047 286 3.0005 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 1 0.0047 0.0007 1 0.0047 0.0007 2 0.0047 0.0007 3 0.0047 0.0007 4 0.0047 0.0007 5 0.0047 0.0007 6 0.0047 0.0007 7 0.0047 0.0000 6 0.0047 0.0000 7 0.0043 0.0001 7 0.0043 0.0001 10 0.0048 0.0048 0.0000 11 0.0048 0.0001 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0000 0.0000 14 0.0049 0.0000 0.0000 15 0.0049 0.00000 0.0000				
285 2.9559 0.0047 286 3.0006 0.0047 287 3.0053 0.0047 288 3.0100 0.0047 288 3.0100 0.0047 Unit Unit Unit Effective Period Rainfall Soil-Loss Rainfall 1 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 3 0.0047 0.0047 0.0000 4 0.0047 0.0047 0.0000 5 0.0047 0.0047 0.0000 6 0.0047 0.0047 0.0000 7 0.0048 0.0048 0.0000 8 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0049 0.0000 0.0000 14 0.004				
286 3.0006 0.0047 287 3.0100 0.0047 288 3.0100 0.0047 288 3.0100 0.0047 Unit Unit Unit Effective Rainfall Soil-Loss Rainfall 1 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 3 0.0047 0.0047 0.0000 4 0.0047 0.0000 0.0000 5 0.0047 0.0000 0.0000 6 0.0047 0.0000 0.0000 7 0.0048 0.0047 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0049				
287 3.0053 0.0047 288 3.0100 0.0047 Unit Unit Unit Effective Period Rainfall Soil-Loss Rainfall (number) (In) (In) (Unit) 1 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 3 0.0047 0.0047 0.0000 5 0.0047 0.0047 0.0000 6 0.0047 0.0000 0.0000 6 0.0047 0.0000 0.0000 7 0.0048 0.0001 0.0000 8 0.0048 0.0001 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0049 0.0000 13 0.0049 0.0000 0.0000 14 0.0049 0.0000 0.0000 15 0.0049 0.0000 <				
288 3.0100 0.0047 Unit Unit Unit Effective Periad Rainfall Soil-Loss Rainfall (number) (In) (In) (In) 1 0.0047 0.0047 0.0000 2 0.0047 0.0000 0.0000 3 0.0047 0.0000 0.0000 4 0.0047 0.0000 0.0000 5 0.0047 0.0000 0.0000 6 0.0047 0.0000 0.0000 7 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0000 0.0000 15 0.0049 0.0000 0.0000 16 0.0049 0.0000 0.0000 17 0.0049				
Unit Unit Effective Period Rainfall Soil-Loss Rainfall (number) (In) (In) (In) 1 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 3 0.0047 0.0047 0.0000 4 0.0047 0.0000 0.0000 5 0.0047 0.0000 0.0000 6 0.0047 0.0000 0.0000 7 0.0048 0.0048 0.0000 8 0.0048 0.0000 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0049 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 <td< td=""><td></td><td></td><td></td><td></td></td<>				
Period (number) Rainfall (In) Soil-Loss (In) Rainfall (In) 1 0.0047 0.0047 0.00047 2 0.0047 0.0047 0.0006 3 0.0047 0.0047 0.0006 4 0.0047 0.0007 0.0006 5 0.0047 0.0007 0.0006 6 0.0047 0.0007 0.0006 7 0.0048 0.0008 0.0006 8 0.0048 0.0008 0.0006 10 0.0048 0.00048 0.0006 11 0.0048 0.0048 0.0006 12 0.0048 0.0048 0.0006 13 0.0048 0.0049 0.0006 14 0.0049 0.0049 0.0006 15 0.0049 0.0049 0.0006 16 0.0049 0.0049 0.0006 12 0.0049 0.0006 0.0006 14 0.0049 0.0006 0.0006	288	3.0100	0.0047	
Period (number) Rainfall (In) Soil-Loss (In) Rainfall (In) 1 0.0047 0.0047 0.0047 2 0.0047 0.0047 0.0040 3 0.0047 0.0047 0.0040 4 0.0047 0.0047 0.0040 5 0.0047 0.0047 0.0040 6 0.0047 0.0047 0.0040 7 0.0048 0.0048 0.0040 8 0.0048 0.0048 0.0040 10 0.0048 0.0048 0.0049 11 0.0048 0.0048 0.0049 12 0.0048 0.0048 0.0049 13 0.0048 0.0049 0.0049 14 0.0049 0.0049 0.0049 15 0.0049 0.0049 0.0049 16 0.0049 0.0049 0.0049 12 0.0049 0.0049 0.0049 14 0.0049 0.0049 0.0049 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Period (number) Rainfall (In) Soil-Loss (In) Rainfall (In) 1 0.0047 0.0047 0.0047 3 0.0047 0.0047 0.0047 3 0.0047 0.0047 0.0046 4 0.0047 0.0047 0.0040 5 0.0047 0.0047 0.0040 6 0.0047 0.0048 0.0040 7 0.0048 0.0048 0.0040 8 0.0048 0.0048 0.0040 10 0.0048 0.0048 0.0040 11 0.0048 0.0048 0.00490 12 0.0048 0.0048 0.00490 13 0.0048 0.0048 0.00490 14 0.0049 0.0049 0.00490 15 0.0049 0.0049 0.00490 16 0.0049 0.0049 0.00490 12 0.0049 0.0049 0.00490 14 0.0049 0.00490 0.00490	Unit	Unit	Unit	
(number) (In) (In) (In) 1 0.0047 0.0047 0.0000 2 0.0047 0.0047 0.0000 3 0.0047 0.0047 0.0000 4 0.0047 0.0001 0.0000 5 0.0047 0.0001 0.0000 6 0.0047 0.0000 0.0000 7 0.0048 0.0043 0.0000 9 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0049 0.0000 13 0.0049 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 12 0.0050 0.0000 0.0000 14 0.0049				
10.00470.00470.004720.00470.00470.006930.00470.00470.006940.00470.00470.000950.00470.00470.000960.00470.00470.000970.00480.00480.000980.00480.00480.000990.00480.00480.0009100.00480.00480.0009110.00480.00480.0009120.00480.00480.0009130.00490.00490.0009140.00490.00490.0009150.00490.00490.0009160.00490.00490.0009170.00490.00490.0009180.00490.00490.0009200.00500.00500.0009210.00500.00500.0009220.00500.00500.0009230.00500.00500.0009240.00500.00500.0009250.00500.00500.0009260.00510.00510.0009270.00510.00510.0009310.00510.00510.0009320.00520.00520.0009330.00520.00520.0009340.00520.00520.0009350.00520.00530.0009360.0053<				(In)
2 0.0047 0.0047 0.0007 3 0.0047 0.0047 0.0000 5 0.0047 0.0047 0.0000 6 0.0047 0.0047 0.0000 7 0.0048 0.0047 0.0000 8 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.8049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0050 0.0050 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 21 0.0050 0.0050 0.0	(!!!!!!!!!!	·	·/	· · · · · · · · · · · · · · · · · · ·
2 0.0047 0.0047 0.0007 3 0.0047 0.0047 0.0000 5 0.0047 0.0047 0.0000 6 0.0047 0.0000 7 0.0048 0.0047 0.0000 8 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0048 0.0000 14 0.0048 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0050 0.0000 0.0000 21 0.0050 0.0050 0.0000 16 0.0049 0.0049 0.0000 17 0.0050 0.0000 0.0000 20 0.0050 0.0000 0.0000 21 0.0050 0.0000 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0000 0.0000 24 0.0050 0.0000 25 0.0051 0.0000 26 0.0051 0.0000 27 0.0051 0.0000 28 0.0051 0.0000 30 0.0052 0.0052 0.0000 31<	1	0 0047	0.0047	0,000
3 0.0047 0.0047 0.0067 4 0.0047 0.0047 0.0066 5 0.0047 0.0047 0.0066 6 0.0047 0.0047 0.0066 7 0.0048 0.0048 0.0006 9 0.0048 0.0048 0.0006 9 0.0048 0.0048 0.0006 10 0.0048 0.0048 0.0006 11 0.0048 0.0048 0.0006 12 0.0048 0.0048 0.0006 13 0.0048 0.0048 0.0006 14 0.0049 0.0049 0.0006 15 0.0049 0.0049 0.0006 16 0.0049 0.0049 0.0006 17 0.0049 0.0049 0.0006 18 0.0049 0.0049 0.0006 20 0.0050 0.0050 0.0006 21 0.0050 0.0050 0.0006 22 0.0050 0.0050 0.0006 21 0.0050 0.0050 0.0				
4 0.0047 0.0047 0.0000 5 0.0047 0.0047 0.0000 7 0.0048 0.0048 0.0000 8 0.0048 0.0000 0.0000 9 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0048 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0009 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0050 0.0000 0.0000 21 0.0050 0.0000 0.0000 22 0.0050 0.0000 0.0000 23 0.0050 0.0000 0.0000 24 0.0050 0.0000 0.0000				
5 0.0047 0.0047 0.0000 6 0.0047 0.0048 0.0000 7 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0050 0.0050 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 21 0.0050 <td></td> <td></td> <td></td> <td></td>				
6 0.0047 0.0048 0.0048 0.0000 7 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0050 0.0050 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0051 0.0051 0.0000 26 </td <td></td> <td></td> <td></td> <td></td>				
7 0.0048 0.0048 0.0000 8 0.0048 0.0048 0.0000 9 0.0048 0.0048 0.0000 10 0.0048 0.0048 0.0000 11 0.0048 0.0048 0.0000 12 0.0048 0.0048 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0050 0.0000 0.0000 20 0.0050 0.0000 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 23 0.0051 0.0051 0.0000 24 0.0051 0.0051 0.0000 25 0.0051 0.0051 <td< td=""><td></td><td></td><td></td><td></td></td<>				
8 0.0048 0.0048 0.0048 0.0048 9 0.0048 0.0048 0.0069 10 0.0048 0.0048 0.0069 11 0.0048 0.0048 0.0069 12 0.0048 0.0048 0.0069 13 0.0048 0.0049 0.0069 14 0.0049 0.0049 0.0069 15 0.0049 0.0049 0.0069 16 0.0049 0.0049 0.0069 17 0.0049 0.0049 0.0069 18 0.0049 0.0049 0.0069 19 0.0049 0.0069 0.0069 20 0.0049 0.0049 0.0069 21 0.0050 0.0056 0.0069 22 0.0050 0.0050 0.0069 23 0.0050 0.0050 0.0069 24 0.0051 0.0051 0.0069 25 0.0051 0.0069 0.0069 26<				
9 0.0048 0.0048 0.0009 10 0.0048 0.0048 0.0009 11 0.0048 0.0048 0.0009 12 0.0048 0.0048 0.0009 13 0.0048 0.0048 0.0009 14 0.0049 0.0049 0.0009 15 0.0049 0.0049 0.0009 16 0.0049 0.0049 0.0009 17 0.0049 0.0049 0.0009 18 0.0049 0.0009 0.0009 19 0.0049 0.0049 0.0009 20 0.0049 0.0049 0.0009 21 0.0050 0.0050 0.0009 22 0.0050 0.0050 0.0009 23 0.0050 0.0050 0.0009 24 0.0050 0.0051 0.0009 25 0.0051 0.0051 0.0009 26 0.0051 0.0051 0.0009 30 0.0051		0.0048		
9 0.0048 0.0048 0.0009 10 0.0048 0.0048 0.0009 11 0.0048 0.0048 0.0009 12 0.0048 0.0048 0.0009 13 0.0048 0.0048 0.0009 14 0.0049 0.0049 0.0009 15 0.0049 0.0049 0.0009 16 0.0049 0.0049 0.0009 17 0.0049 0.0049 0.0009 18 0.0049 0.0049 0.0009 19 0.0049 0.0049 0.0009 20 0.0049 0.0049 0.0009 21 0.0050 0.0050 0.0009 22 0.0050 0.0050 0.0009 23 0.0050 0.0050 0.0009 24 0.0050 0.0050 0.0009 25 0.0051 0.0051 0.0009 26 0.0051 0.0051 0.0009 27 0.0051				0.0000
10 0.0048 0.0048 0.0009 11 0.0048 0.0048 0.0000 12 0.0048 0.0049 0.0000 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0050 0.0049 0.0000 21 0.0050 0.0049 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0051 0.0051 0.0000 24 0.0051 0.0051 0.0000 25 0.0051 0.0051 0.0000 26 0.0051 0.0051 0.00000 27 0.00				
11 0.0048 0.0048 0.0048 0.0049 12 0.0048 0.0049 0.0000 13 0.0049 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 20 0.0049 0.0049 0.0000 21 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0051 0.0051 0.0000 26 0.0051 0.0051 0.0000 23 0.0052 0.0050 0.0000 24 0.0051 0.0051 0.0000 25 0.0051 0.0051 0.0000 26 0.0051 0.0051 0.0000 27 0.0051 0.0051 0.0000 28 0.0051 0.0051 0.0000 31 0.0052 0.0052 0.0000 32 0.0052 0.0052 0.0000 33 0.0052 0.0052 0.0000 34 0.0052 0.0052 0.0000 35 0.0053 0.0053 0.0000 36 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000				0.0000
12 0.0048 0.0048 0.0049 13 0.0048 0.0049 0.0000 14 0.0049 0.0049 0.0000 15 0.0449 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 19 0.0049 0.0049 0.0000 20 0.0049 0.0049 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0050 0.0050 0.0000 26 0.0051 0.0051 0.0000 27 0.0051 0.0051 0.0000 28 0.0051 0.0051 0.0000 30 0.0051 0.0051 0.0000 31 0.0051 0.0051 0.0000 34 0.0052 0.0052 0.0000 35 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
13 0.0048 0.0049 0.0049 0.0049 14 0.0049 0.0049 0.0049 0.0000 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 19 0.0049 0.0049 0.0000 20 0.0050 0.0050 0.0000 21 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0050 0.0050 0.0000 26 0.0051 0.0051 0.0000 25 0.0051 0.0051 0.0000 26 0.0051 0.0051 0.0000 28 0.0051 0.0051 0.0000 39 0.0052 0.0052 0.0000 30 0.0052 0.0052 0.0000 <td></td> <td></td> <td></td> <td></td>				
14 0.0049 0.0049 0.0049 15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 19 0.0049 0.0049 0.0000 20 0.0050 0.0049 0.0000 21 0.0550 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0050 0.0050 0.0000 26 0.0051 0.0050 0.0000 25 0.0051 0.0051 0.0000 26 0.0051 0.0051 0.0000 29 0.0051 0.0051 0.0000 30 0.0052 0.0052 0.0000 31 0.0051 0.0051 0.0000 32 0.0052 0.0052 0.0000 33 0.0052 0.0052 0.0000 34 0.0052 0.0052				
15 0.0049 0.0049 0.0000 16 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 19 0.0049 0.0049 0.0000 20 0.0049 0.0050 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0050 0.0050 0.0000 26 0.0051 0.0000 27 0.0051 0.0051 0.0000 27 0.0051 0.0051 0.0000 26 0.0051 0.0000 27 0.0051 0.0051 0.0000 28 0.0051 0.0051 0.0000 31 0.0051 0.0000 32 0.0052 0.0052 0.0000 34 0.0052 0.0052 0.0000 35 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 36 0.0053 0.0052 0.0000 37 0.0053 0.0053 0.0000 38 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
16 0.0049 0.0049 0.0049 0.0000 17 0.0049 0.0049 0.0000 18 0.0049 0.0049 0.0000 19 0.0049 0.0049 0.0000 20 0.0049 0.0049 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 25 0.0050 0.0050 0.0000 26 0.0050 0.0050 0.0000 27 0.0051 0.0051 0.0000 28 0.0051 0.0051 0.0000 30 0.0051 0.0051 0.0000 31 0.0051 0.0051 0.0000 32 0.0052 0.0052 0.0000 33 0.0052 0.0052 0.0000 34 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 36 0.0053 0.0052 0.0000 36 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
18 0.0049 0.0049 0.0000 19 0.0049 0.0049 0.0000 20 0.0049 0.0049 0.0000 21 0.0050 0.0050 0.0000 22 0.0050 0.0050 0.0000 23 0.0050 0.0050 0.0000 24 0.0050 0.0050 0.0000 26 0.0050 0.0050 0.0000 26 0.0050 0.0050 0.0000 26 0.0051 0.0051 0.0000 27 0.0051 0.0051 0.0000 28 0.0051 0.0051 0.0000 30 0.0051 0.0051 0.0000 31 0.0051 0.0051 0.0000 32 0.0051 0.0051 0.0000 34 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	0.0049	0.0049 🔻	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	0.0051	0.0051	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	0.0051		0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
32 0.0051 0.0051 0.0000 33 0.0052 0.0052 0.0000 34 0.0052 0.0052 0.0000 35 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
33 0.0052 0.0052 0.0000 34 0.0052 0.0052 0.0000 35 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000	27			
34 0.0052 0.0052 0.0000 35 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000	22			
35 0.0052 0.0052 0.0000 36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
36 0.0052 0.0052 0.0000 37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
37 0.0052 0.0052 0.0000 38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000	36			
38 0.0053 0.0053 0.0000 39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000	37	0.0052	0.0052	0.0000
39 0.0053 0.0053 0.0000 40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000		0.0053		0.0000
40 0.0053 0.0053 0.0000 41 0.0053 0.0053 0.0000				
41 0.0053 0.0053 0.0000				
	42	6.00.0	20000	0.0000

43	0.0054	0.0054	0.0000
44	0.0054	0.0054	0.0000
45	0.0054	0.0054	0.0000
46	0.0054	0.0054	0.0000
47	0.0054	0.0054	0.0000
48	0.0055	0.0055	0.0000
49	0.0055	0.0055	0.0000
50	0.0055	0.0055	0.0000
51 52	0.0055 0.0055	0.0055 0.0055	0.0000 0.0000
53	0.0056	0.0056	0.0000
54	0.0056	0.0056	0.0000
55	0.0056	0.0056	0.0000
56	0.0056	0.0056	0.0000
57	0.0057	0.0057	0.0000
58	0.0057	0.0057	0.0000
59	0.0057	0.0057	0.0000
60	0.0057	0.0057	0.0000
61	0.0058	0.0058	0.0000
62	0.0058	0.0058	0.0000
63	0.0058	0.0058	0.0000
64	0.0058	0.0058	0.0000
65	0.0059	0.0059	0.0000
66 67	0.0059 0.0059	0.0059 0.0059	0.0000
68	0.0059	0.0059	0.0000
69	0.0059	0.0060	0.0000
70	0.0060	0.0060	0.0000
71	0.0060	0.0060	0.0000
72	0.0060	0.0060	0.0000
73	0.0061	0.0061	0.0000
74	0.0061	0.0061	0.000
75	0.0061	0.0061	0.0000
76	0.0061	0.0061	0.0000
77	0.0062	0.0062	0.0000
78	0.0062	0.0062	0.000
79	0.0062	0.0062	0.0000
80 81	0.0063	0.0063	0.0000 0.0000
82	0.0063	0.0063	0.0000
83	0.0064	0.0064	0.0000
84	0.0064	0.0064	0.0000
85	0.0064	0.0064	0.0000
86	0.0065	0.0065	0.0000
87	0.0065	0.0065	0.0000
88	0.0065	0.0065	0.0000
89	0.0066	0.0066	0.0000
90	0.0066	0.0066	0.000
91	0.0066	0.0066	0.0000
92 93	0.0067	0.0067 0.0067	0.0000 0.0000
94	0.0067	0.0067	0.0000
95 95	0.0068	0.0068	0.0000
96	0.0068	0.0068	0.0000
97	0.0069	0.0069	0.0000
98	0.0069	0.0069	0.0000
99	0.0069	0.0069	0.0000
100	0.0070	0.0070	0.0000
101	0.0070	0.0070	0.0000
102	0.0071	0.0071	0.0000
103	0.0071	0.0071	0.0000
104	0.0071	0.0071	0.0000
105 106	0.0072 0.0072	0.0072 0.0072	0.0000 0.0000
105	0.0073	0.0073	0.0000
107	0.0073	0.0073	0.0000
100	0.0074	0.0074	0.0000
110	0.0074	0.0074	0.0000
111	0.0075	0.0075	0.0000


112	0.0075	0.0075	0.0000	
113	0.0076	0.0076	0.0000	
114	0.0076	0.0076	0.0000	
115	0.0077	0.0077	0.0000	
116 117	0.0077 0.0078	0.0077 0.0078	0.0000 0.0000	
117	0.0079	0.0079	0.0000	
119	0.0079	0.0079	0.0000	
120	0.0080	0.0080	0.0000	
121	0.0081	0.0081	0.0000	
122	0.0081	0.0081	0.0000	
123	0.0082	0.0082	0.0000	
124	0.0082	0.0082	0.0000	
125	0.0083	0.0083	0.0000	
126 127	0.0084 0.0085	0.0084 0.0085	0.0000 0.0000	
127	0.0085	0.0085	0.0000	
120	0.0086	0.0086	0.0000	
130	0.0087	0.0087	0.0000	
131	0.0088	0.0088	0.0000	
132	0.0088	0.0088	0.0000	
133	0.0089	0.0089	0.0000	
134	0.0090	0.0090	0.0000	
135	0.0091	0.0091	0.0000	
136 137	0.0091 0.0093	0.0091 0.0093	0.0000 0.0000	
137	0.0093	0.0093	0.0000	
139	0.0095	0.0095	0.0000	
140	0.0095	0.0095	0.0000	
141	0.0097	0.0097	0.0000	
142	0.0097	0.0097	0.0000	
143	0.0099	0.0099	0.0000	
144 145	0.0099 0.0117	0.0099 0.0117	0.0000 0.0000	
145	0.0118	0.0118	0.0000	
147	0.0119	0.0119	0.0000	
148	0.0120	0.0120	0.0000	
149	0.0122	0.0122	0.0000	
150	0.0123	0.0123	0.0000	
151	0.0125	0.0125	0.0000	
152 153	0.0126 0.0 <u>1</u> 28	0.0126 0.0128	0.0000 0.0000	
155	0.0129	0.0129	0.0000	
155	0.0131	0.0131	0.0000	
156	0.0132	0.0132	0.0000	
157	0.0134	0.0134	0.0000	
158	0.0136	0.0136	0.0000	
159	0.0138	0.0138	0.0000	
160 161	0.0140 0.0142	0.0140 0.0142	0.0000 0.0000	
162	0.0142	0.0144	0.0000	
163	0.0147	0.0147	0.0000	
164	0.0149	0.0149	0.0000	
165	0.0152	0.0152	0.0000	
166	0.0154	0.0154	0.0000	
167 168	0.0158 0.0160	0.0158 0.0160	0.0000 0.0000	
168	0.0164	0.0164	0.0000	
170	0.0166	0.0166	0.0000	
171	0.0171	0.0171	0.0000	
172	0.0174	0.0174	0.0000	
173	0.0179	0.0179	0.0000	
174	0.0182	0.0182	0.0000	
175 176	0.0189 0.0192	0.0189 0.0192	0.0000 0.0000	
178	0.0200	0.0200	0.0000	
177	0.0204	0.0204	0.0000	
179	0.0214	0.0214	0.0000	
180	0.0219	0.0219	0.0000	

181	0.0231	0.0231	0.0000	
182	0.0237	0.0237	0.0000	
183	0.0252	0.0252	0.0000	
184	0.0261	0.0261	0.0000	
185	0.0219	0.0219	0.0000	
186	0.0231	0.0231	0.0000	
187	0.0263	0.0263	0.0000	
188	0.0283	0.0283	0.0000	
189	0.0341	0.0341	0.0000	
190	0.0385	0.0385	0.0000	
191	0.0551 0.0757	0.0551	0.0000	
192 193	0.2370	0.0757 0.0819	0.0000 0.1550	
195	0.0448	0.0448	0.0000	
194	0.0309	0.0309	0.0000	
195	0.0246	0.0246	0.0000	
197	0.0271	0.0271	0.0000	
198	0.0244	0.0244	0.0000	
199	0.0224	0.0224	0.0000	
200	0.0209	0.0209	0.0000	
201	0.0196	0.0196	0.0000	
202	0.0185	0.0185	0.0000	
203	0.0176	0.0176	0.0000	
204	0.0169	0.0169	0.0000	
205	0.0162	0.0162	0.0000	
206	0.0156	0.0156	0.0000	
207	0.0150	0.0150	0.0000	
208	0.0145	0.0145	0.0000	
209	0.0141	0.0141	0.0000	
210	0.0137	0.0137	0.0000	
211	0.0133	0.0133	0.0000	
212	0.0130	0.0130	0.0000 0.0000	
213 214	0.0127 0.0124	0.0127	0.0000	
214 215	0.0124	0.0124 0.0121	0.0000	
215	0.0121	0.0119	0.0000	
210	0.0100	0.0100	0.0000	
218	0.0098	0.0098	0.0000	
219	0.0096	0.0096	0.0000	
220	0.0094	0.0094	0.0000	
221	0.0092	0.0092	0.0000	
222	0.0090	0.0090	0.0000	
223	0.0089	0.0089	0.0000	
224	0.0087	0.0087	0.0000	
225	0.0086	0.0086	0.0000	
226	0.0084	0.0084	0.0000	
227	0.0083	0.0083	0.0000	
228	0.0081	0.0081	0.0000	
229	0.0080	0.0080	0.0000	
230	0.0079	0.0079	0.0000	
231	0.0078	0.0078	0.0000	
232 233	0.0077 0.0076	0.0077 0.0076	0.0000 0.0000	
233 234	0.0075	0.0075	0.0000	
234	0.0074	0.0074	0.0000	
236	0.0073	0.0073	0.0000	
237	0.0072	0.0072	0.0000	
238	0.0071	0.0071	0.0000	
239	0.0070	0.0070	0.0000	
240	0.0069	0.0069	0.0000	
241	0.0068	0.0068	0.0000	
242	0.0068	0.0068	0.0000	
243	0.0067	0.0067	0.0000	
244	0.0066	0.0066	0.0000	
245	0.0065	0.0065	0.0000	
246	0.0065	0.0065	0.0000	
247	0.0064	0.0064	0.0000	
248	0.0063	0.0063	0.0000	
249	0.0063	0.0063	0.0000	

250 0.0062 0.0062 0.0000 251 0.00661 0.0060 0.0000 253 0.00660 0.0060 0.0000 254 0.0059 0.0059 0.0000 255 0.0058 0.0059 0.0000 255 0.0058 0.0059 0.0000 255 0.0058 0.0057 0.0000 259 0.0056 0.0056 0.0000 259 0.0056 0.0056 0.0000 261 0.0055 0.0056 0.0000 262 0.0055 0.0056 0.0000 263 0.0055 0.0055 0.0000 264 0.0055 0.0053 0.0000 265 0.0053 0.0000 0.0000 266 0.0053 0.0000 0.0000 266 0.0053 0.0005 0.0000 266 0.0053 0.0000 0.0000 270 0.0052 0.0053 0.0000 272 0.0052 0.0050 0.0000 273 0.0052	
252 0.0061 0.0060 253 0.0060 0.0060 254 0.0059 0.0059 255 0.0059 0.0059 256 0.0059 0.0069 257 0.0058 0.0059 258 0.0057 0.0000 259 0.0057 0.0060 260 0.0056 0.0000 261 0.0056 0.0000 263 0.0056 0.0000 264 0.0055 0.0000 265 0.0056 0.0000 266 0.0055 0.0000 266 0.0055 0.0000 266 0.0055 0.0000 266 0.0053 0.0000 267 0.0054 0.00053 266 0.0052 0.0000 267 0.0052 0.00051 271 0.0052 0.0052 272 0.0051 0.00051 273 0.0052 0.00052 274 0.0059 0.0050 275 0.0051 0.	
253 0.0660 0.0660 0.0660 254 0.0660 0.0660 0.0600 255 0.0859 0.0659 0.0600 256 0.0859 0.0659 0.0600 257 0.0858 0.0658 0.0600 258 0.0858 0.0657 0.0607 260 0.0857 0.0657 0.0606 261 0.0856 0.0655 0.0600 262 0.0855 0.0655 0.0600 263 0.0855 0.0655 0.0600 264 0.0855 0.0655 0.0600 265 0.0855 0.0605 0.0600 266 0.0854 0.0655 0.0600 266 0.0854 0.0605 0.0600 266 0.0853 0.06053 0.0600 266 0.0854 0.0605 0.0600 267 0.0852 0.0605 0.0600 270 0.0852 0.0605 0.0600 273 0.0852 0.0605 0.0600 274 0.0851 <	
254 0.0060 0.0060 0.0000 255 0.0059 0.0059 0.0000 257 0.0058 0.0058 0.0000 258 0.0057 0.0057 0.0000 260 0.0057 0.0057 0.0000 261 0.0056 0.0056 0.0000 262 0.0056 0.0055 0.0000 263 0.0055 0.0000 0.0000 264 0.0055 0.0055 0.0000 265 0.0055 0.0005 0.0000 266 0.0055 0.0005 0.0000 265 0.0055 0.0005 0.0000 266 0.0055 0.0005 0.0000 266 0.0053 0.0005 0.0000 267 0.0053 0.0005 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0052 0.0052 0.0000 273 0.0052 0.0052 0.0000 274 0.0050 <t< th=""><th></th></t<>	
255 0.0059 0.0059 0.0000 256 0.0059 0.0053 0.0000 257 0.0058 0.0057 0.0000 259 0.0057 0.0057 0.0000 261 0.0056 0.0056 0.0000 262 0.0056 0.0056 0.0000 263 0.0056 0.0056 0.0000 264 0.0055 0.0055 0.0000 265 0.0055 0.0005 0.0000 266 0.0055 0.0000 0.0000 265 0.0053 0.0000 0.0000 266 0.0053 0.0000 0.0000 268 0.0053 0.0000 0.0000 270 0.0052 0.0053 0.0000 271 0.0052 0.0051 0.0000 273 0.0051 0.0051 0.0000 274 0.0051 0.0051 0.0000 275 0.0050 0.0050 0.0000 276 0.0050 0.0050 0.0000 275 0.0050 <t< th=""><th></th></t<>	
256 0.0059 0.0069 257 0.0058 0.0058 0.0060 258 0.0057 0.0067 0.0060 259 0.0057 0.0067 0.0060 261 0.0056 0.0056 0.0060 262 0.0056 0.0056 0.0060 263 0.0055 0.0060 0.0060 265 0.0055 0.0060 0.0060 266 0.0055 0.0060 0.0060 266 0.0053 0.0063 0.0060 266 0.0053 0.0063 0.0060 266 0.0053 0.0063 0.0060 266 0.0053 0.0063 0.0060 267 0.0052 0.0052 0.0060 270 0.0052 0.0052 0.0060 271 0.0052 0.0052 0.0060 273 0.0051 0.0051 0.0060 275 0.0051 0.0050 0.0060 276 0.0051 0.0060 0.0060 277 0.0050 0.0050 <t< th=""><th></th></t<>	
257 0.0058 0.0060 258 0.0057 0.0060 259 0.0057 0.0060 260 0.0055 0.0056 261 0.0056 0.0056 0.0060 263 0.0056 0.0055 0.0060 264 0.0055 0.0055 0.0060 265 0.0055 0.0060 0.0060 266 0.0055 0.0060 0.0060 266 0.0055 0.0060 0.0060 266 0.0053 0.0063 0.0060 266 0.0053 0.0063 0.0060 266 0.0053 0.0063 0.0060 270 0.0052 0.0063 0.0060 271 0.0052 0.0051 0.0060 273 0.0051 0.0066 0.0060 275 0.0051 0.0050 0.0060 276 0.0050 0.0050 0.0060 276 0.0050 0.0060 0.0060 277 0.0050 0.0060 0.0060 273 0.00	
258 0.0058 0.0057 0.0000 259 0.0057 0.0000 260 0.0057 0.0000 261 0.0056 0.0056 0.0000 263 0.0055 0.0005 0.0000 264 0.0055 0.0055 0.0000 265 0.0055 0.0000 0.0000 266 0.0055 0.0000 0.0000 266 0.0055 0.0000 0.0000 266 0.0054 0.0000 0.0000 267 0.0053 0.0000 0.0000 268 0.0053 0.0000 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0051 0.0000 0.0000 274 0.0051 0.0000 0.0000 276 0.0050 0.00050 0.0000 276 0.0050 0.0000 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0000 0.0000 <th></th>	
259 0.0057 0.0057 0.0000 260 0.0055 0.0090 261 0.0056 0.0056 0.0000 263 0.0055 0.0055 0.0000 264 0.0055 0.0055 0.0000 265 0.0055 0.0000 0.0000 266 0.0054 0.0053 0.0000 267 0.0053 0.0053 0.0000 268 0.0053 0.0000 0.0000 270 0.0053 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0051 0.0051 0.0000 274 0.0051 0.0050 0.0000 275 0.0051 0.0051 0.0000 276 0.0051 0.0000 0.0000 278 0.0050 0.00050 0.0000 279 0.0050 0.0050 0.0000 278 0.0050 0.0000 0.0000 279 0.0050 0.0000 0.0000 280 0.0043 0.0000 <	
260 0.0057 0.0057 0.0000 261 0.0056 0.0056 0.0000 262 0.0056 0.0055 0.0000 263 0.0055 0.0000 0.0000 264 0.0055 0.0000 0.0000 265 0.0055 0.0000 0.0000 266 0.0054 0.0004 0.0000 267 0.0053 0.0003 0.0000 268 0.0053 0.0003 0.0000 270 0.0053 0.0052 0.0000 271 0.0052 0.00052 0.0000 272 0.0052 0.0000 0.0000 273 0.0052 0.0000 0.0000 274 0.0051 0.0005 0.0000 275 0.0051 0.0005 0.0000 276 0.0050 0.0005 0.0000 275 0.0051 0.0050 0.0000 276 0.0050 0.0005 0.0000 276 0.0050 0.0005 0.0000 278 0.0050 <	
261 0.0056 0.0056 0.0006 262 0.0056 0.0055 0.0006 263 0.0055 0.0005 0.0006 264 0.0055 0.0006 0.0056 265 0.0054 0.0006 0.0006 266 0.0054 0.0004 0.0000 267 0.0053 0.0003 0.0000 268 0.0053 0.0003 0.0000 270 0.0053 0.0003 0.0000 271 0.0052 0.0005 0.0000 272 0.0052 0.0005 0.0000 273 0.0052 0.0005 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 <t< th=""><th></th></t<>	
263 0.0056 0.0055 0.0000 264 0.0055 0.0055 0.0000 266 0.0054 0.0054 0.0000 267 0.0053 0.0053 0.0000 268 0.0053 0.0053 0.0000 269 0.0053 0.0053 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0052 0.0051 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0051 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0049 0.0049 0.0000 283 0.0048 0.0049 0.0000 284 0.0048 <t< th=""><th></th></t<>	
264 0.0055 0.0055 0.0000 265 0.0054 0.0054 0.0000 266 0.0053 0.0053 0.0000 267 0.0053 0.0053 0.0000 268 0.0053 0.0053 0.0000 269 0.0053 0.0053 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0052 0.0052 0.0000 275 0.0051 0.0001 0.0000 276 0.0051 0.00051 0.0000 277 0.0050 0.00050 0.0000 277 0.0050 0.00050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.00050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0048 0.0049 0.0000 283 0.0048 0.0049 0.0000 284 0.0048	
265 0.0055 0.0054 0.0054 266 0.0054 0.0054 0.0000 268 0.0053 0.0053 0.0000 269 0.0053 0.0053 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 272 0.0052 0.0052 0.0000 273 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0051 0.0051 0.0000 277 0.0050 0.0050 0.0000 275 0.0051 0.0051 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 278 0.0050 0.0000 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0000 0.0000 285 0.0047 <t< th=""><th></th></t<>	
266 0.0054 0.0054 0.0090 267 0.0053 0.0053 0.0000 268 0.0053 0.0053 0.0000 269 0.0053 0.0052 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0052 0.0052 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0051 0.0051 0.0000 275 0.0050 0.0050 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0048 0.0049 0.0000 283 0.0048 0.0049 0.0000 284 0.0047 0.0000 0.0000 285 0.0047 <t< th=""><th>•</th></t<>	•
267 0.0054 0.0053 0.0000 268 0.0053 0.0053 0.0000 270 0.0053 0.0053 0.0000 271 0.0052 0.0052 0.0000 272 0.0052 0.0052 0.0000 273 0.0051 0.0051 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 277 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0049 0.0000 284 0.0048 0.0000 0.0000 285 0.0047 0.0047 0.0000 286 0.0047 <t< th=""><th>•</th></t<>	•
268 0.0053 0.0053 0.0060 269 0.0053 0.0053 0.0060 270 0.0053 0.0052 0.0060 271 0.0052 0.0052 0.0060 273 0.0052 0.0051 0.0060 274 0.0051 0.0051 0.0060 275 0.0051 0.0051 0.0060 276 0.0051 0.0060 0.0060 276 0.0050 0.0050 0.0060 277 0.0050 0.0050 0.0060 278 0.0050 0.0060 0.0060 279 0.0050 0.0050 0.0060 280 0.0049 0.0049 0.0060 281 0.0049 0.0049 0.0060 283 0.0048 0.0048 0.0060 284 0.0048 0.0048 0.0060 285 0.0048 0.0049 0.0060 284 0.0048 0.0048 0.0060 285 0.0048 0.0047 0.0060 286 0.0047 <t< th=""><th></th></t<>	
269 0.0053 0.0053 0.0000 270 0.0052 0.0052 0.0000 271 0.0052 0.0052 0.0000 273 0.0052 0.0052 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0051 0.0051 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0048 0.0000 286 0.0048 0.0047 0.0000 287 0.0047 0.0047 0.0000 286 0.0047 <t< th=""><th></th></t<>	
270 0.0053 0.0053 0.0000 271 0.0052 0.0052 0.0000 272 0.0052 0.0052 0.0000 273 0.0051 0.0051 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0049 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0047 0.0000 0.0000 285 0.0047 0.0000 0.0000 286 0.0047 0.0000 0.0000 287 0.0047 0.0000 0.0000 288 0.0047 0.0000 0.0000 288 0.0047 0.0000 0.0000	
271 0.0052 0.0052 0.0000 272 0.0052 0.0052 0.0000 273 0.0051 0.0051 0.0060 274 0.0051 0.0051 0.0060 275 0.0051 0.0051 0.0060 276 0.0050 0.0050 0.0060 277 0.0050 0.0050 0.0060 278 0.0050 0.0050 0.0060 279 0.0050 0.0050 0.0060 280 0.0049 0.0049 0.0060 281 0.0049 0.0049 0.0060 283 0.0048 0.0048 0.0060 284 0.0048 0.0048 0.0060 285 0.0047 0.0047 0.0060 286 0.0047 0.0047 0.0060 288 0.0047 0.0047 0.0060	
272 0.0052 0.0052 0.0000 273 0.0052 0.0052 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0000 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0047 0.0000 0.0000 286 0.0047 0.0000 0.0000 285 0.0048 0.0000 0.0000 286 0.0047 0.0000 0.0000 286 0.0047 0.0000 0.0000 286 0.0047 0.0000 0.0000 288 0.0047 0.0000 0.0000 288 0.0047 <t< th=""><th></th></t<>	
273 0.0052 0.0052 0.0000 274 0.0051 0.0051 0.0000 275 0.0051 0.0051 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0049 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0047 0.0048 0.0000 286 0.0047 0.0047 0.0000 285 0.0047 0.0047 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
274 0.0051 0.0051 0.0060 275 0.0051 0.0051 0.0060 276 0.0050 0.0050 0.0060 277 0.0050 0.0050 0.0060 278 0.0050 0.0050 0.0060 279 0.0050 0.0049 0.0060 280 0.0049 0.0049 0.0060 281 0.0049 0.0049 0.0060 283 0.0048 0.0048 0.0060 284 0.0048 0.0048 0.0060 285 0.0047 0.0047 0.0060 286 0.0047 0.0047 0.0060 286 0.0047 0.0047 0.0060 286 0.0047 0.0047 0.0060 287 0.0047 0.0047 0.0060 288 0.0047 0.0047 0.0060 288 0.0047 0.0047 0.0060	
275 0.0051 0.0051 0.0000 276 0.0050 0.0050 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0049 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0047 0.0047 0.0000 286 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
276 0.0051 0.0051 0.0000 277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0049 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0047 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
277 0.0050 0.0050 0.0000 278 0.0050 0.0050 0.0000 279 0.0050 0.0049 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0048 0.0000 286 0.0047 0.0007 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
278 0.0050 0.0050 0.0000 279 0.0050 0.0050 0.0000 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
279 0.0050 0.0050 0.0060 280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0047 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
280 0.0049 0.0049 0.0000 281 0.0049 0.0049 0.0000 282 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0048 0.0000 286 0.0047 0.0000 287 0.0047 0.0047 288 0.0047 0.0047	
281 0.0049 0.0049 0.0000 282 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0047 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
282 0.0049 0.0049 0.0000 283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0048 0.0000 286 0.0047 0.0007 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
283 0.0048 0.0048 0.0000 284 0.0048 0.0048 0.0000 285 0.0048 0.0048 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
284 0.0048 0.0048 0.0000 285 0.0048 0.0048 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
285 0.0048 0.0048 0.0000 286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
286 0.0047 0.0047 0.0000 287 0.0047 0.0047 0.0000 288 0.0047 0.0047 0.0000	
287 0.0047 0.0047 0.0060 288 0.0047 0.0047 0.0000	
Total soil rain loss = 2.85(In)	
Total soil rain loss = 2.85(In)	
Total effective rainfall = 0.16(In) Peak flow rate in flood hydrograph = 2.01(CFS)	
ttereformed and the storm storm storm and store	
Hydrograph in 5 Minute intervals ((CFS)) Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0	
0+5 0.0000 0.00 Q 0+10 0.0000 0.00 Q 0+15 0.0000 0.00 Q 0+20 0.0000 0.00 Q	
0+25 0.0000 0.00 Q 0+30 0.0000 0.00 Q 0+35 0.0000 0.00 Q 0+40 0.0000 0.00 Q 0+45 0.0000 0.00 Q 0+50 0.0000 0.00 Q	
0+55 0.0000 0.00 Q <t< th=""><th></th></t<>	

1+20	0.0000	0.00 Q			
1+25	0.0000	0.00 Q	Ì	İ	
1+30	0.0000	0.00 Q			
1+35	0.0000	0.00 Q			
1+40	0.0000	0.00 Q			
1+45	0.0000	0.00 Q			
1+50	0.0000	0.00 Q			
1+55	0.0000	0.00 Q			
2+ 0	0.0000	0.00 Q			
2+ 5	0.0000	0.00 Q			
2+10	0.0000	0.00 Q			
2+15	0.0000	0.00 Q			
2+20 2+25	0.0000 0.0000	0.00 Q 0.00 Q			
2+25	0.0000	0.00 Q 0.00 Q			
2+35	0.0000	0.00 Q			
2+40	0.0000	0.00 Q			
2+45	0.0000	0.00 Q	i		
2+50	0.0000	0.00 Q	i		
2+55	0.0000	0.00 Q	i	i i	
3+ 0	0.0000	0.00 Q	i	i i	
3+ 5	0.0000	0.00 Q	i		
3+10	0.0000	0.00 Q	İ	i i 🚄	
3+15	0.0000	0.00 Q			
3+20	0.0000	0.00 Q			
3+25	0.0000	0.00 Q			
3+30	0.0000	0.00 Q			
3+35	0.0000	0.00 Q			
3+40	0.0000	0.00 Q			
3+45	0.0000	0.00 Q			
3+50	0.0000	0.00 Q			
3+55 4+ 0	0.0000	0.00 Q			
4+ 0 4+ 5	0.0000 0.0000	0.00 Q 0.00 Q			
4+ 5 4+10	0.0000	0.00 Q			
4+10	0.0000	0.00 Q			
4+20	0.0000	0.00 Q			
4+25	0.0000	0.00 Q			
4+30	0.0000	0.00 Q			
4+35	0.0000	0.00 Q		i i	i
4+40	0.0000	0.00 Q	NIC	i i	Í
4+45	0.0000	0.00 Q		i i	ĺ
4+50	0.0000	0.00 Q			
4+55	0.0000	0.00 Q			
5+ 0	0.0000	0.00 Q	•		
5+ 5	0.0000	0.00 Q			
5+10	0.0000	0.00 Q			
5+15	0.0000	0.00 Q			
5+20	0.0000	0.00 Q			
5+25 5+30	0.0000	0.00 Q 0.00 Q			
5+30	0.0000	0.00 Q	ł		
5+35	0.0000	0.00 Q	l		
5+45	0.0000	0.00 Q	i		i
5+50	0.0000	0.00 Q	İ		
5+55	0.0000	0.00 Q	İ		i i
6+ 0	0.0000	0.00 Q	İ	i i	İ. Alaşı da başar da başar da başar da başar da başar da başar da başar da başar da başar da başar da başar da
6+ 5	0.0000	0.00 Q	İ	i i	Í
6+10	0.0000	0.00 Q	Ì	İ	
6+15	0.0000	0.00 Q			
6+20	0.0000	0.00 Q			
6+25	0.0000	0.00 Q			
6+30	0.0000	0.00 Q			
6+35	0.0000	0.00 Q			
6+40	0.0000	0.00 Q	ļ		
6+45	0.0000	0.00 Q			
6+50	0.0000	0.00 Q			
6+55 7+ 0	0.0000	0.00 Q			
/± 0	0.0000	0.00 Q	1	1 1	

7+ 5	0.0000	0.00 Q	1	1 1	
7+10	0.0000	0.00 Q	i	i i	İ. Alaşı da karalışı da karalışı da karalışı da karalışı da karalışı da karalışı da karalışı da karalışı da kar
7+15	0.0000	0.00 Q	i	i i	İ
7+20	0.0000	0.00 Q	i	i i	İ
7+25	0.0000	0.00 Q	i	i i	
7+30	0.0000	0.00 Q	i	i i	
7+35	0.0000	0.00 Q	i	i i	
7+40	0.0000	0.00 Q	İ	i i	
7+45	0.0000	0.00 Q		i i	
7+50	0.0000	0.00 Q		i i	
7+55	0.0000	0.00 Q			
8+ 0	0.0000	0.00 Q			
8+ 5	0.0000	0.00 Q			
8+10	0.0000	0.00 Q			
8+15	0.0000	0.00 Q			
8+20	0.0000	0.00 Q			
8+25	0.0000	0.00 Q			
8+30	0.0000	0.00 Q			
8+35	0.0000	0.00 Q			
8+40	0.0000	0.00 Q			
8+45	0.0000	0.00 Q			
8+50	0.0000	0.00 Q			
8+55	0.0000	0.00 Q			
9+ 0	0.0000	0.00 Q			
9+ 5	0.0000	0.00 Q			
9+10	0.0000	0.00 Q			
9+15	0.0000	0.00 Q			
9+20	0.0000	0.00 Q			
9+25 9+30	0.0000 0.0000	0.00 Q 0.00 Q			
9+35	0.0000	0.00 Q 0.00 Q			
9+40	0.0000	0.00 Q	i i		
9+45	0.0000	0.00 Q	i		
9+50	0.0000	0.00 Q	i 🔺	i I	i i i i i i i i i i i i i i i i i i i
9+55	0.0000	0.00 Q		i /	
10+ 0	0.0000	0.00 Q			
10+ 5	0.0000	0.00 Q			
10+10	0.0000	0.00 Q			
10+15	0.0000	0.00 Q			
10+20	0.0000	0.00 Q			
10+25	0.0000	0.00 Q			
10+30	0.0000	0.00 Q			
10+35	0.0000	0.00 Q			
10+40 10+45	0.0000 0.0000	0.00 Q			
10+43	0.0000	0.00 Q 0.00 Q			
10+55	0.0000	0.00 Q			
11+ 0	0.0000	0.00 Q			
11+ 5	0.0000	0.00 Q			
11+10	0.0000	0.00 Q	i i		
11+15	0.0000	0.00 Q		i i	
11+20	0.0000	0.00 Q	İ	i i	
11+25	0.0000	0.00 Q	i	i i	i i i i i i i i i i i i i i i i i i i
11+30	0.0000	0.00 Q	i	i i	İ
11+35	0.0000	0.00 Q	İ	i i	İ. Alaşı da karalışı da karalışı da karalışı da karalışı da karalışı da karalışı da karalışı da karalışı da kar
11+40	0.0000	0.00 Q		i i	
11+45	0.0000	0.00 Q			
11+50	0.0000	0.00 Q			
11+55	0.0000	0.00 Q	ļ	ļ ļ	
12+ 0	0.0000	0.00 Q			
12+ 5	0.0000	0.00 Q			
12+10	0.0000	0.00 Q			
12+15	0.0000	0.00 Q			
12+20 12+25	0.0000 0.0000	0.00 Q 0.00 Q			
12+23	0.0000	0.00 Q			
12+35	0.0000	0.00 Q	Ì		
12+40	0.0000	0.00 Q	i	i i	
12+45	0.0000	0.00 Q	İ	i i	İ
		-		•	

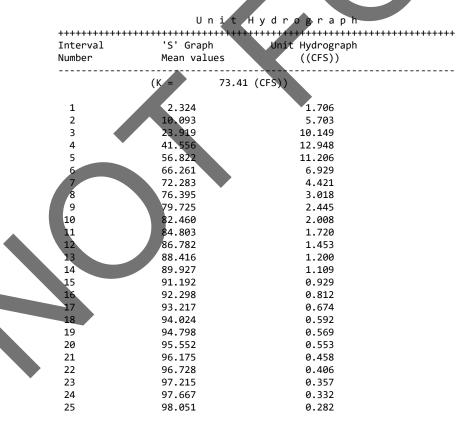
18+35	0.0781	0.03 Q	1	l VI		
18+40	0.0782	0.01 Q	i i	V V		
18+45	0.0782	0.00 Q	i i	i v		
18+50	0.0782	0.00 Q	Ì I	V V		
18+55	0.0782	0.00 Q	ļ ļ	V V		
19+ 0	0.0782	0.00 Q		V V		
19+ 5	0.0782	0.00 Q		V V		
19+10	0.0782	0.00 Q				
19+15 19+20	0.0782	0.00 Q 0.00 Q		l V I V	•	
19+20	0.0782 0.0782	0.00 Q 0.00 Q		I V		
19+30	0.0782	0.00 Q		l V		
19+35	0.0782	0.00 Q		v		
19+40	0.0782	0.00 Q	i i	V		
19+45	0.0782	0.00 Q	i i	V		
19+50	0.0782	0.00 Q		V		
19+55	0.0782	0.00 Q		V		
20+ 0	0.0782	0.00 Q		V		
20+ 5	0.0782	0.00 Q		V		
20+10	0.0782	0.00 Q				
20+15	0.0782	0.00 Q		V		
20+20 20+25	0.0782 0.0782	0.00 Q 0.00 Q		V		
20+25	0.0782	0.00 Q 0.00 Q		V		
20+35	0.0782	0.00 Q		i v		
20+40	0.0782	0.00 Q		v v		
20+45	0.0782	0.00 Q	i i	i v		
20+50	0.0782	0.00 Q	i i	V		
20+55	0.0782	0.00 Q		K K		
21+ 0	0.0782	0.00 Q		V		
21+ 5	0.0782	0.00 Q		V		
21+10	0.0782	0.00 Q		V		
21+15	0.0782	0.00 Q				
21+20 21+25	0.0782	0.00 Q				
21+25 21+30	0.0782 0.0782	0.00 Q 0.00 Q				
21+35	0.0782	0.00 Q 0.00 Q		v		
21+40	0.0782	0.00 Q		v		
21+45	0.0782	0.00 Q	i 🖌 i	V V		
21+50	0.0782	0.00 Q	i i	V		
21+55	0.0782	0.00 Q		V		
22+ 0	0.0782	0.00 Q		l V		
22+ 5	0.0782	0.00 Q		V V		
22+10	0.0782	0.00 Q				
22+15 22+20	0.0782 0.0782	0.00 Q 0.00 Q		l V		
22+20	0.0782	0.00 Q 0.00 Q				
22+30	0.0782	0.00 Q		l V		
22+35	0.0782	0.00 Q		v		
22+40	0.0782	0.00 Q	i i	V		
22+45	0.0782	0.00 Q	i i	V		
22+50	0.0782	0.00 Q		V		
22+55	0.0782	0.00 Q		V		
23+ 0	0.0782	0.00 Q		V V		
23+ 5	0.0782	0.00 Q				
23+10 23+15	0.0782 0.0782	0.00 Q 0.00 Q		l V		
23+20	0.0782	0.00 Q		l V		
23+25	0.0782	0.00 Q		i v		
23+30	0.0782	0.00 Q	i i	v		
23+35	0.0782	0.00 Q	i İ	V V		
23+40	0.0782	0.00 Q	I İ	i v		
23+45	0.0782	0.00 Q	ļ l	V		
23+50	0.0782	0.00 Q		V		
23+55	0.0782	0.00 Q				
24+ 0	0.0782	0.00 Q				
24+ 5 24+10	0.0782 0.0782	0.00 Q 0.00 Q		l V l V		
24+10	0.0782	0.00 Q 0.00 Q		I V		
24713	0.0702	v.vv y	1 I	I V		

24+20	0.0782	0.00	Q
24+25	0.0782	0.00	Q
24+30	0.0782	0.00	Q
24+35	0.0782	0.00	Q
24+40	0.0782	0.00	Q
24+45	0.0782	0.00	Q
24+50	0.0782	0.00	Q
24+55	0.0782	0.00	Q
25+ 0	0.0782	0.00	Q
25+ 5	0.0782	0.00	Q
25+10	0.0782	0.00	Q
25+15	0.0782	0.00	Q
25+20	0.0782	0.00	Q
25+25	0.0782	0.00	Q
25+30	0.0782	0.00	Q
25+35	0.0782	0.00	Q
25+40	0.0782	0.00	Q
25+45	0.0782	0.00	Q
25+50	0.0782	0.00	Q
25+55	0.0782	0.00	Q
26+ 0	0.0782	0.00	Q
26+ 5	0.0782	0.00	Q
26+10	0.0782	0.00	Q
26+15	0.0782	0.00	Q
26+20	0.0782	0.00	Q
26+25	0.0782	0.00	Q
26+30	0.0782	0.00	Q
26+35	0.0782	0.00	Q

V V V V V V V V V V V

V V V

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 08/04/23 San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6320 225038 - 18313 VALLEY BLVD - SB ANIMAL CARE CENTER EXISITNG CONDITIONS 5-YEAR, 24-HOUR STORM BY: JTS DATE: 08-04-23 Storm Event Year = 5 Antecedent Moisture Condition = 1 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-Area Duration Isohyeta Isohyetal (Ac.) (hours) (In) Rainfall data for year 10 6.07 0.92 1 Rainfall data for year 2 1.62 6.07 6 _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ Rainfall data for year 2 6.07 24 3.01 ------ - -. Rainfall data for year 100 6.07 1.32 **,** _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Rainfall data for year 100 6.07 6 3.50 -----Rainfall data for year 100 24 7.80 6.07 ******* Area-averaged max loss rate, Fm ******* SCS curve SCS curve Area Fp(Fig C6) Fm Area Ар No.(AMCII) NO.(AMC 1) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 50.0 31.0 6.07 1.000 0.983 1.000 0.983 Area-averaged adjusted loss rate Fm (In/Hr) = 0.983


******* Area-Averaged low loss rate fraction, Yb **********

Area	Area	SCS CN	SCS CN	S	Pervious
(Ac.)	Fract	(AMC2)	(AMC1)		Yield Fr
6.07	1.000	50.0	31.0	20.66	0.000

Area-averaged catchment yield fraction, Y = 0.000 Area-averaged low loss fraction, Yb = 1.000 User entry of time of concentration = 0.413 (hours) Watershed area = 6.07(Ac.) Catchment Lag time = 0.330 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 25.2220 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.983(In/Hr) Average low loss rate fraction (Yb) = 1.000 (decimal) VALLEY UNDEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.296(In) Computed peak 30-minute rainfall = 0.606(In) Specified peak 1-hour rainfall = 0.800(In) Computed peak 3-hour rainfall = 1.429(In) Specified peak 6-hour rainfall = 2.060(In) Specified peak 24-hour rainfall = 4.132(In)

Rainfall depth area reduction factors: Using a total area of 6.07(Ac.) (Ref: fig. E-4)

5-minute factor = 1.000	Adjusted rainfall =	
30-minute factor = 1.000	Adjusted rainfall =	0.606(In)
1-hour factor = 1.000	Adjusted rainfall =	0.799(In)
3-hour factor = 1.000	Adjusted rainfa ll =	1.429(In)
6-hour factor = 1.000	Adjusted rainfall =	
24-hour factor = 1.000	Adjusted rainfall =	4.132(In)

	00 (77		
26 27	98.402 98.684	0.257 0.207	
27 28	98.684 98.936	0.185	
29	99.188	0.185	
30	99.440	0.185	
31	99.693	0.185	
32	100.000	0.093	
Peak Unit	Adjusted mass rainfall	Unit rainfall	
Number	(In)	(In)	
1	0.2958	0.2958	
2	0.3904	0.0945	
3	0.4591	0.0687	
4 5	0.5151 0.5632	0.0560 0.0481	
6	0.6058	0.0426	
7	0.6443	0.0385	
8	0.6797	0.0354	
9	0.7125	0.0328	
10	0.7431	0.0307	
11	0.7720	0.0289	
12 13	0.7994 0.8339	0.0273 0.0345	
13	0.8572	0.0333	
15	0.8994	0.0322	
16	0.9306	0.0312	
17	0.9609	0.0303	
18	0.9904	0.0295	
19	1.0191	0.0287	
20 21	1.0471 1.0745	0.0280 0.0274	
21	1.1012	0.0274	
23	1.1274	0.0262	
24	1.1530	0.0256	
25	1.1782	0.0251	
26	1.2028	0.0247	
27	1.2271	0.0242	
28	1.2509	0.0238 0.0234	
29 30	1.2743 1.2973	0,0230	
31	1.3200	0.0227	
32	1.3423	0.0223	
33	1.3644	0.0220	
34	1.3861	0.0217	
35	1.4075	0.0214	
36 37	1.4286 1.4494	0.0211 0.0208	
37 38	1.4494	0.0208	
39	1.4903	0.0203	
40	1.5103	0.0201	
41	1.5302	0.0198	
42	1.5498	0.0196	
43 44	1.5692	0.0194	
44	1.5883	0.0192	
45 46	1,6073 1,6261	0.0190	
46 47	1.6446	0.0188 0.0186	
47 48	1.6630	0.0184	
48	1.6813	0.0182	
50	1.6993	0.0180	
51	1.7172	0.0179	
52	1.7349	0.0177	
53	1.7524	0.0175	
54	1.7698	0.0174	
55 56	1.7870 1.8041	0.0172 0.0171	
56	1.8041	0.0169	
58	1.8379	0.0168	
59	1.8546	0.0167	

60	1.8711	0.0165		
61	1.8875	0.0164		
62	1.9038	0.0163		
63	1.9200	0.0162		
64	1.9360	0.0160		
65	1.9519	0.0159		
66	1.9677	0.0158		
67	1.9834	0.0157		
68	1.9990	0.0156		
69	2.0145	0.0155		
70 71	2.0299	0.0154		
71	2.0451	0.0153		
72 73	2.0603 2.0746	0.0152 0.0143		
73	2.0748	0.0143		
74	2.1030	0.0141		
75	2.1050	0.0140		
70	2.1309	0.0139		
78	2.1448	0.0138		
79	2.1585	0.0138		
80	2.1722	0.0137		
81	2.1858	0.0136		
82	2.1993	0.0135		
83	2.2127	0.0134		
84	2.2261	0.0133		
85	2.2393	0.0133		
86	2.2525	0.0132		
87	2.2656	0.0131		
88	2.2787	0.0130		
89	2.2916	0.0130		
90	2.3045	0.0129		
91	2.3173	0.0128		
92 93	2.3301	0.0127 0.0127		
93	2.3427 2.3554	0.0126		
95	2.3679	0.0125		
96	2.3804	0.0125		
97	2.3928	0.0124		
98	2.4052	0.0124		
99	2.4174	0,0123		
100	2.4297	0.0122		
101	2.4418	0.0122		
102	2.4539	0.0121		
103	2.4660	0.0120		
104	2.4780	0.0120		
105	2.4899	0.0119		
106	2.5018	0.0119		
107	2.5136	0.0118		
108	2.5254	0.0118		
109 110	2.5371	0.0117		
110	2.5487 2.5603	0.0117 0.0116		
111 112	2.5719	0.0116		
112	2.5834	0.0115		
114	2.5948	0.0115		
115	2.6062	0.0114		
116	2.6176	0.0114		
117	2.6289	0.0113		
118	2.6402	0.0113		
119	2.6514	0.0112		
120	2.6625	0.0112		
121	2.6736	0.0111		
122	2.6847	0.0111		
123	2.6957	0.0110		
124	2.7067	0.0110		
125	2.7176	0.0109		
126	2.7285	0.0109		
127	2.7394	0.0108		
128	2.7502	0.0108		