Figure 4.6.11 shows the walkshed for Kimbark Elementary School. The walkshed shows the area which a student can walk a half mile from the school. The walkshed has been reviewed for sidewalk connectivity and accessibility.

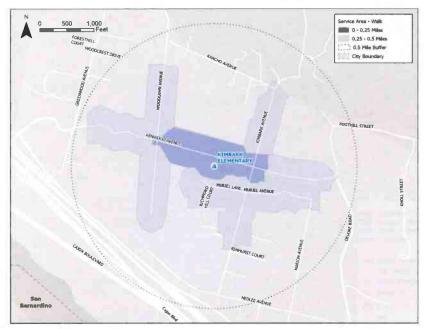


Figure 4.6.11 Existing Pedestrian Walkshed

Riding and Rolling

Currently, there are no existing bicycle facilities surrounding Kimbark Elementary School. There are also no plans to implement bicycle facilities near Kimbark Elementary.

The bicycle environment was assessed using the bicycle Level of Traffic Stress (LTS) methodology for characterizing cycling environments, as developed by Mekuria, et al (2012) of the Mineta Transportation Institute. LTS considers a number of factors to classify the street network into categories according to the level of stress it causes cyclists. The LTS assessment conducted by MBI concluded that the roads immediately surrounding Kimbark Elementary School have high LTS scores indicating higher stress levels for cyclists (Figure 4.6.12).

Figure 4.6.13 shows the bikeshed for Kimbark Elementary School. The bikeshed shows the area which a student can bike one mile from the school.

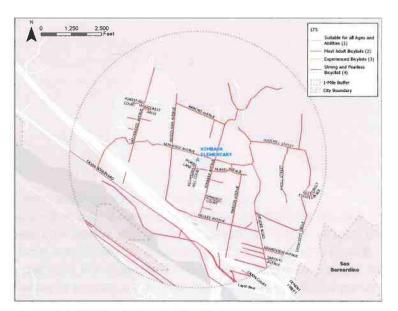


Figure 4.6.12 Bicycle Level of Traffic Stress

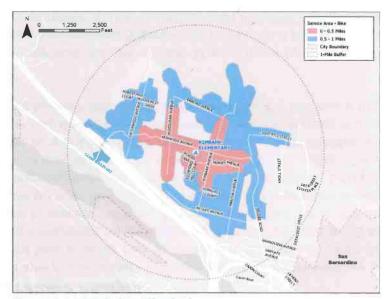


Figure 4.6.13 Existing Bikeshed

Pick-Up and Drop-Off

Kimbark Elementary School is accessed via Kenwood Avenue and Kimbark Avenue, which are both two-lane roads. Figure 4.6.14 illustrates the existing conditions, and the behaviors observed during the mobility assessment.

The intersection of Kenwood Avenue and Kimbark Avenue is all-way stop controlled. Vehicles were seen parking on both sides of Kenwood Avenue, creating a backup vehicles along the road. Those who parked on the north side of Kenwood Avenue were seen crossing the street into oncoming traffic. There was also conflict between vehicles going westbound on Kenwood and turning to park at the front of the school, and vehicles going eastbound. Parents were also seen dropping off students on the north side of Muriel Avenue to pick-up students. Although this is an unofficial pick-up location, there is a gate students can exit from.

One of the biggest concerns that was mentioned during the walk audit was that the neighbors who live on the south side of Muriel Avenue are frustrated with the vehicles who park near their homes pick up and dropping off students.

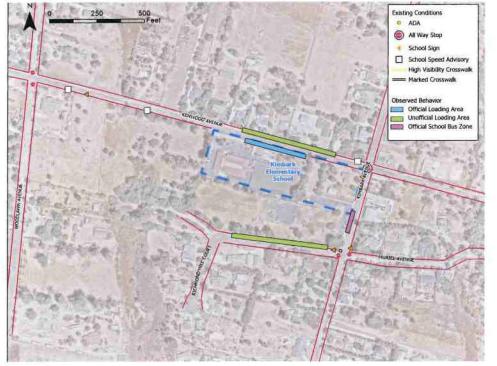


Figure 4.6.14 Existing Pick-Up and Drop-Off Vehicle Behavior

Safety Analysis

Between 2019 and 2023, there were no collisions within a half mile radius of Kimbark Elementary School.

Travel Pattern Analysis

A travel pattern analysis was conducted for Kimbark Elementary School to understand how students may be traveling to the campus. Origin-Destination data was downloaded from the Replica Big Data platform, and ArcGIS and Python were used to process the data. Featuring the school site as the destination, the analysis provides insights into the magnitude of trips made to-and-from the surrounding neighborhoods. The neighborhoods are defined by Traffic Analysis Zones (TAZs) that fall within the school's attendance boundary. The analysis is performed by travel mode for both active travel, which includes walking and biking, and auto travel. The resulting maps display the number of trips by these two modes between the neighborhood TAZs and the TAZ where the school is located.

For each neighborhood, the number of trips made by each travel type was shown using lines on a map (Figure 4.6.15 and 4.6.16). A thicker line means more people are estimated to travel using that mode from that TAZ. Line thickness can be compared within the same mode of travel, such as comparing two walking routes from two different TAZs. One can also get a general sense of how walking and driving compare by looking at both sets of lines from the same TAZ side by side. For example, a thicker line for auto, compared to active for a particular TAZ indicates more of an interest to drive compared to walking or biking. It should be noted the lines are scaled differently with regards to trips for each mode of travel (auto and active), so they should not be compared directly. This data helps reveal how people tend to travel based on several factors, such as the existing walking or biking environment, land uses, physical barriers, population densities, and the layout of the roadway network.

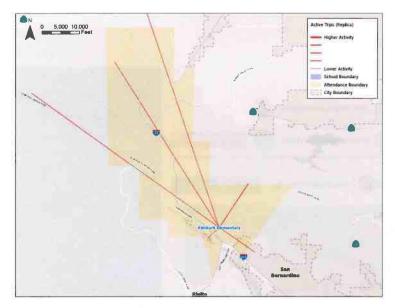
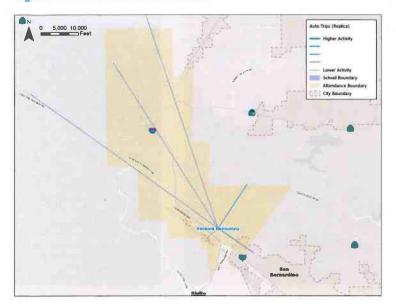
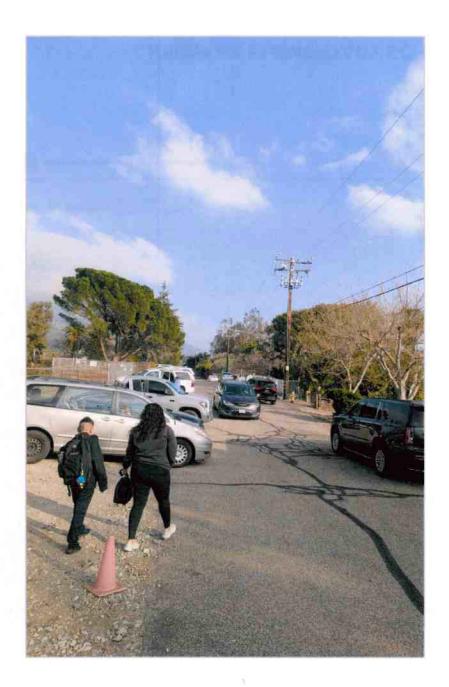
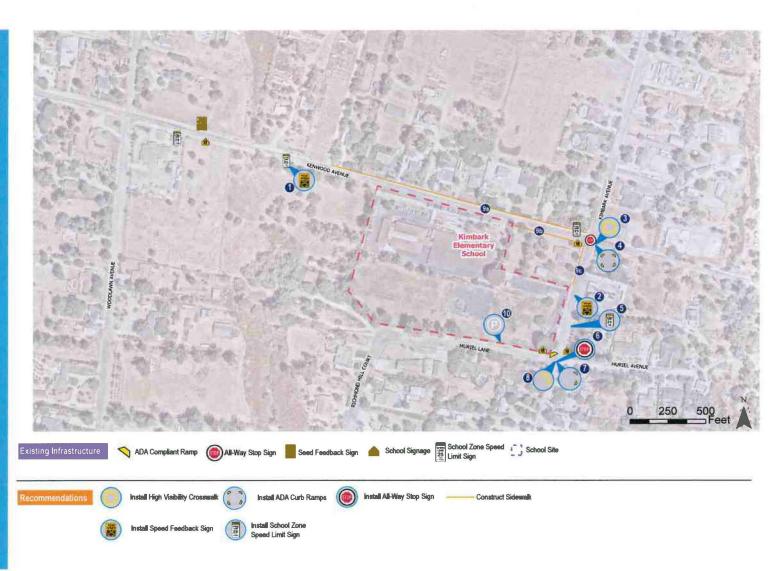


Figure 4.6.15 Active Travel Pattern


Figure 4.6.16 Auto Travel Pattern

SCHOOL RECOMMENDATIONS

During the walk audit, several walking and biking challenges were identified. Parents and school staff expressed concerns about student safety crossing Kenwood Avenue from the north side of the street during pick-up and drop-off times. Many people were observed walking into oncoming traffic with students trying to get to the school gates. At the back of the school, it was observed that vehicles also used the dirt shoulder to park during the pick-up/drop-off times.

A series of project recommendations are proposed to improve the walking and biking experience for students. On Kenwood Avenue, a sidewalk is recommended on the north side of the street be installed. High visibility crosswalks are also recommended Kenwood Avenue and Kimbark Avenue, as well as Kimbark Avenue and Muriel Avenue, to provide a dedicated pedestrian crossing. Speed feedback signs are also recommended along both Kenwood Avenue and Kimbark Avenue to function as an additional traffic calming measure.

KIMBARK ELEMENTARY SCHOOL

TABLE 4.6.1 KIMBARK ELEMENTARY SCHOOL RECOMMENDATIONS

ID	Improvement	Description	Location
1	Speed Feedback Sign	Install speed feedback sign with existing school zone speed limit sign	Kenwood Avenue
2	Speed Feedback Sign	Install speed feedback sign along Kimbark Avenue on the east side of the school	Kenwood Avenue
3	High-Visibility Crosswalk	Install high-visibility crosswalk on all four legs of the intersection	Kenwood Avenue and Kimbark Avenue
4	ADA Complaint Curb Ramps	Install ADA compliant curb ramps on all four corners of the intersection	Kenwood Avenue and Kimbark Avenue
5	School Zone Speed Limit Sign	Install school zone speed limit sign along Kimbark Avenue	Kimbark Avenue
6	All-Way Stop Control	Install all-way stop at the intersection (*)	Kimbark Avenue and Muriel Lane
7	ADA Complaint Curb Ramps	Install ADA compliant curb ramps on the northeast and southeast corners of the intersection	Kimbark Avenue and Muriel Lane
8	High-Visibility Crosswalk	Install high-visibility crosswalk on the north and east legs of the intersection	Kimbark Avenue and Muriel Lane
9a	Sidewalk	Construct sidewalks on the north side of Kenwood Avenue	Kenwood Avenue
9b		Construct sidewalk on the south side of Kenwood Avenue	Kenwood Avenue
9с		Construct Sidewalk on west side of Kimbark Avenue	Kimbark Avenue
10	Additional Parking or Drop Off Zone	Consider adding additional parking or implementing an additional pick-up/drop-off area.	Muriel Lane

^(*) Note: Recommendation will need additional studies to determine warrants

4.7 PACIFIC HIGH SCHOOL

1020 Pacific St, San Bernardino, CA 92404 San Bernardino City Unified School District

Pacific High School is located in south-west San Bernardino on the northeast corner of Pacific Street and Perris Hill Park Road. The school is located within San Bernardino City's right-of-way, but the surrounding streets are located within the County's right-of-way. Pacific High School is located approximately 2 miles south-west of the Interstate 10 (I-10) freeway and approximately 0.7 miles south of the San Bernardino Family YMCA. The existing land use surrounding Pacific High School is primarily residential with Anton Elementary School to the west and San Bernardino Juvenile Court across the street. Figure 4.7.1 shows the school area and the overall context of the school site.

Figure 4.7.1 Context Map

SCHOOL PROFILE

Pacific High School is located within the City of San Bernardino and is a part of the San Bernardino City Unified School District. During the 2023-24 school year, enrollment was approximately 1,222 students in grades 9-12 with a student/ teacher ratio of 22:1. The demographic composition of the students is shown in Figure 4.7.2, is similar to the community as a whole, which shows the school has a dominant Hispanic population according to the census estimates. According to the California Department of Education in 2023-24, 14 % of the student population was an English learner and 44% were English proficient. Additionally, 96% of Pacific High School students received free or reduced-price lunch during the 2023-2024 school year which is significantly higher than the state and the county. (see Figure 4.7.3)

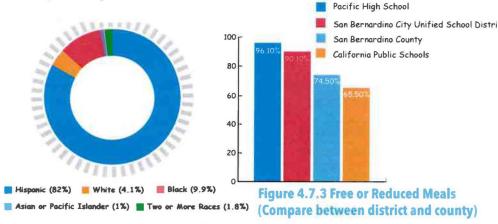


Figure 4.7.2 Demographic Composition

Student Tallies

The Safe Routes to School Student Arrival and Departure Tally Sheet was administered by Pacific High School staff from February 3rd to February 7th, 2025, to better understand what mode(s) students use to travel to and from the campus. As displayed in Figure 4.7.4, the vast majority of students arrived and departed in a family vehicle (64% average), followed by students walking (20% average), then transit (8% average), respectively. Pacific High School has a

school bus that drops students off at the front of the school. Approximately 3% of students who participated in the student tally reported taking the school bus.

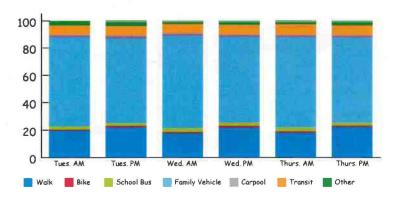


Figure 4.7.4 Pacific High School Student Arrival and Departure Tallie

Mobility Assessment

A walk audit and on-site meeting for Pacific High School in San Bernardino was conducted on February 4, 2025. The purpose of the event was to identify any issues related to student drop-off and pick-up that may make it unsafe or uncomfortable for students to walk, bike, and roll to and from school. Included in this assessment are discussions of observed insufficiencies, such as substandard sidewalks, missing curb ramps and crosswalks, inadequate bicycle infrastructure, and high traffic volumes and speeds around the school.

Those who attended the walk audit included the Pacific High School Principal and staff, San Bernardino County staff, Michael Baker International staff, and Pacific High School parents and students.

An online survey was administered to Pacific High School parents via SurveyMonkey during the week of February 3rd, 2025. Of the eight recorded responses, six parents noted that their children live over a half mile away from school. As shown in Figure 4.7.5 and 4.7.6, vehicles are the most common mode of transportation used for arrival and departure from school.

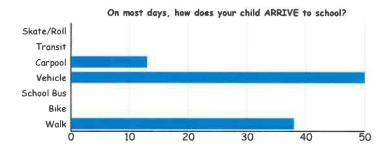


Figure 4.7.5 Pacific High School Parent Survey Question (arrive to school)

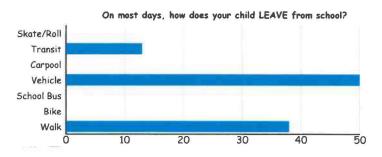


Figure 4.7.6 Pacific High School Parent Survey Question (leave from school)

CalEnviroScreen 4.0

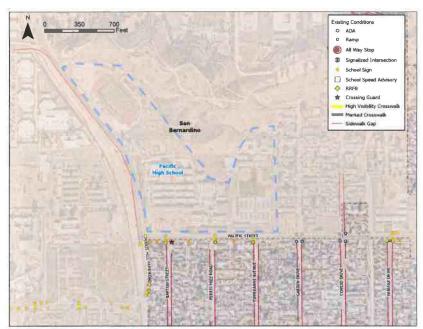
CalEnviroScreen (CES) is a tool developed by the California Office of Environmental Health Hazard Assessment (OEHHA) that identifies communities that are disproportionately burdened by pollutants. Indicators used to identify communities include exposures (traffic, pesticides, and drinking water), environmental effects (cleanup sites, solid waste), sensitive populations (Asthma, low birth weight), and socioeconomic factors (education, poverty, unemployment). Scores range from 0-100 with a higher score indicating a higher effect of pollutants for the area. Figure 4.7.7 illustrates the CES scores for the census tract where Pacific High School is located, scoring in the 80th to 90th percentile range which indicates the area is disproportionately burdened by pollutants. For this region, those highest exposures to pollutants are ozone, lead from housing, and drinking water, in that order.



Figure 4.7.7 CalEnviroScreen 4.0 Score - Pacific High School

Healthy Place Index

The California Healthy Places Index (HPI), developed by the Public Health Alliance of Southern California, is a tool used to explore the community conditions that impact life expectancy. The HPI tool helps prioritize public and private investments, resources, and programs in neighborhoods where they are needed the most. The HPI tool combines 23 community characteristics such as access to healthcare, housing, education, and more. The tool produces a score ranging from 0-100 with a higher score representing a healthier community. The tool's indicators reflect widely recognized thematic areas of the social determinants of health and are consistent with those described by the Centers for Disease Control (CDC). Figure 4.7.8 illustrates the HPI scores for the census tract Pacific High School is located within. The HPI score of 6.6 indicates less healthy conditions surrounding the school. These less healthy conditions are most critical in the categories of clean environment, neighborhood amenities access, and education level.


Figure 4.7.8 Healthy Place Index Score - Pacific High School

Walking

Figure 4.7.9 provides an overview of the existing pedestrian network and challenges observed and analyzed. There is an existing sidewalk on both sides of Pacific Street just south of the school. At Pacific Street and Perris Hill Park Road there is a traffic signal with two pedestrian crossings. Along Pacific Street there are three uncontrolled crossings along the school frontage. Two of those crossings have push-button activated in-road lights that were not functional during the time of the walk audit. A crossing guard is currently located at the crossing at Perris Hill Road and Pacific Street. A sidewalk also exists on the east side of Perris Hill Park Road. During the principal interview and walk audit, it was noted that the intersection of Pacific Street and Perris Hill Park Road is very dangerous, and cars have been seen driving through the intersection into the culvert west of the intersection. Additionally, it was noted that Perris Hill Park Road is very dark and feels unsafe when walking at night.

One of the biggest concerns expressed by school staff was student safety crossing Pacific Street during the pick-up and drop-off time. Many students were seen crossing the street, navigating through four lanes of traffic. There are a lot of semi-trucks and distracted drivers seen going fast on Pacific Street, and safety is a major concern for school staff.

Challenges to walking were evaluated using the Pedestrian Evaluation Score (PES) developed by CR Associates. Based on the physical environment, surrounding land uses, and the street environment, a PES score was developed for nearby roadways. Figure 4.7.10 shows the results of the PES scoring. A sidewalk network with medium and high PES scores indicates low stress for walking, whereas a low or very low PES score can be considered a stressful walking environment. The roadways near Pacific High School show primarily low PES scores, with a very low scores on Pacific Street and Perris Hill Park Road. This indicates a stressful walking environment near the school along these roadways and may create an access barrier to walking.

Figure 4.7.9 Existing Pedestrian Conditions

Figure 4.7.10 Pedestrian Evaluation Score

Figure 4.7.11 shows the walkshed for Pacific High School. The walkshed shows the area which a student can walk a half mile from the school. The walkshed has been reviewed for sidewalk connectivity and accessibility.

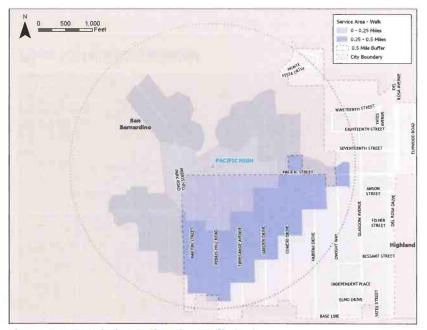
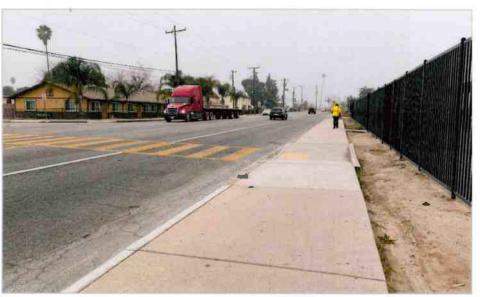



Figure 4.7.11 Existing Pedestrian Walkshed

Riding and Rolling

Currently, there are no bicycle facilities surrounding Pacific High School. There are plans to implement a Class II Bike Lane along Pacific Street and Perris Hill Park Road through SBCTA. A Class I Multi-Use Trail is also planned along the existing culvert west of Perris Hill Park Road (Figure 4.7.12).

The bicycle environment was assessed using the bicycle Level of Traffic Stress (LTS) methodology for characterizing cycling environments, as developed by Mekuria, et al (2012) of the Mineta Transportation Institute. LTS considers a number of factors to classify the street network into categories according to the level of stress it causes cyclists. The LTS assessment conducted by MBI concluded that the roads immediately surrounding Pacific High School have high LTS scores indicating higher stress levels for cyclists (Figure 4.7.13).

Figure 4.7.14 shows the bikeshed for Pacific High School. The bikeshed shows the area which a student can bike one mile from the school.

Figure 4.7.12 Existing and Planned Bicycle Conditions

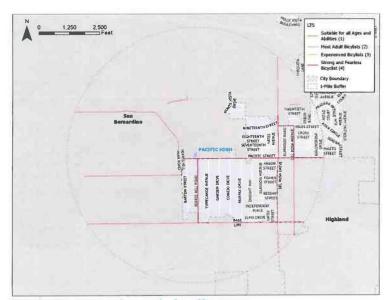


Figure 4.7.13 Bicycle Level of Traffic Stress

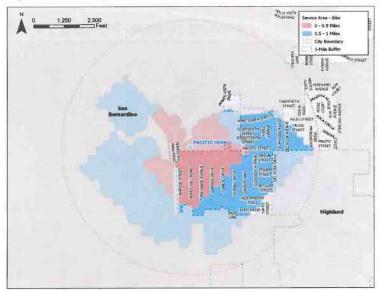


Figure 4.7.14 Existing Bikeshed