
SEISMIC LINE SW-1

PASSIVE DISPERSION CURVE

APPENDIX B

SITE-SPECIFIC GROUND MOTION ANALYSIS

SITE-SPECIFIC GROUND MOTION ANALYSIS

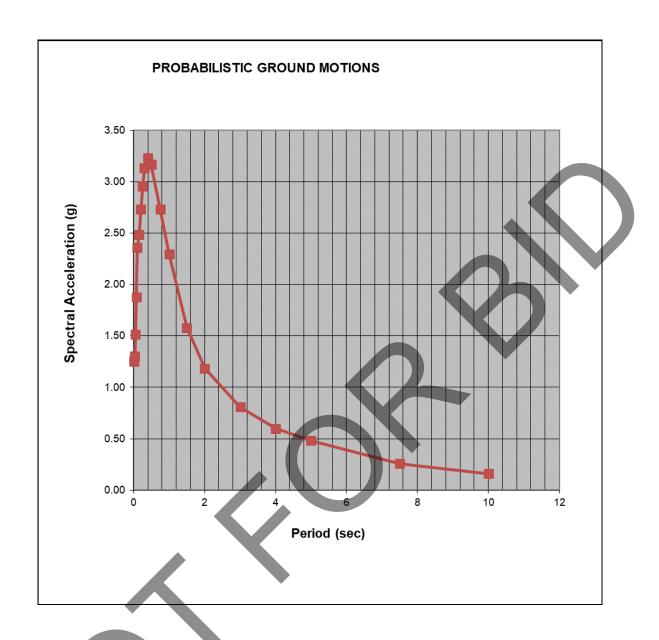
A detailed summary of the site-specific ground motion analysis, which follows Section 21 of the ASCE Standard 7-16 (2017) and the 2022 California Building Code is presented below, with the Seismic Design Parameters Summary included within this appendix following the summary text.

♦ Mapped Spectral Acceleration Parameters (CBC 1613A.2.1)-

Based on maps prepared by the U.S.G.S (Risk-Adjusted Maximum Considered Earthquake (MCE_R) Ground Motion Parameter for the Conterminous United States for the 0.2 and 1-second Spectral Response Acceleration (5% of Critical Damping; Site Class B/C), a value of $\bf 2.506g$ for the 0.2 second period (S_s) and $\bf 1.002g$ for the 1.0 second period (S₁) was calculated (ASCE 7-16 Figures 22-1, 22-2 and CBC 1613A.2.1).

◆ Site Classification (CBC 1613A.2.2 & ASCE 7-16 Chapter 20)-

Based on the site-specific measured shear-wave value of 1,075.1 feet/second (327.7 meters/second), the soil profile type used should be Site Class "**D**." This Class is defined as having the upper 100 feet (30 meters) of the subsurface being underlain by "stiff soil" with average shear-wave velocities of 600 to 1,200 feet/second (180 to 360 meters/second), as detailed within Appendix A.


◆ Site Coefficients (CBC 1613A.2.3)-

Based on CBC Tables 1613A.2.3(1) and 1613A.2.3(2), the site coefficient F_a = 1.2 and F_v = 1.7, respectively.

◆ Probabilistic (MCE_R) Ground Motions (ASCE 7 Section 21.2.1)-

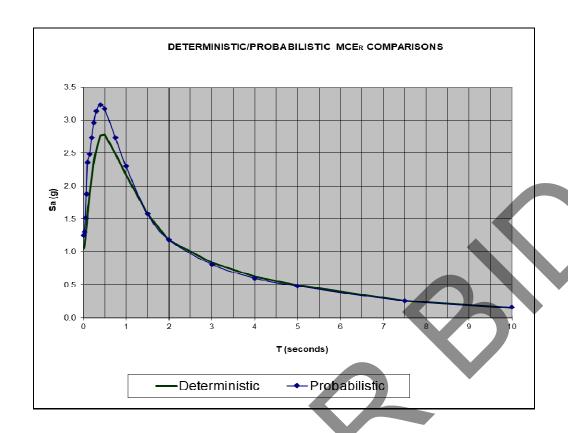
Per Section 21.2.1, the probabilistic MCE spectral accelerations shall be taken as the spectral response accelerations in the direction of maximum response represented by a five percent damped acceleration response spectrum that is expected to achieve a one percent probability of collapse within a 50-year period.

The probabilistic analysis included the use of the Open Seismic Hazard Analysis (OpenSHA). The selected Earthquake Rupture Forecast (ERF) was UCERF3 along with a Probability of Exceedance of 2% in 50 Years. The average of four Next Generation Attenuation West-2 Relations (2014 NGA) were utilized to produce a response spectrum. These included Chiou & Youngs (2014), Abrahamsom et al. (2014), Campbell & Bozorgnia (2014), Boore et al. (2014), and Campbell & Bozorgnia (2014). The Probabilistic Risk Targeted Response Spectrum was determined as the product of the ordinates of the probabilistic response spectrum and the applicable risk coefficient (CR). These values were then modified to produce a spectrum based upon the maximum rotated components of ground motion. The resulting MCER Response Spectrum is indicated below:

Deterministic Spectral Response Analyses (ASCE 7 Section 21.2.2)-

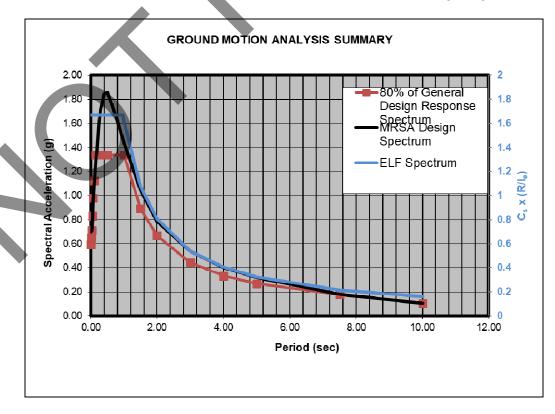
The deterministic MCE_R response acceleration at each period shall be calculated as an 84th-percentile 5 percent damped spectral response acceleration in the direction of maximum horizontal response computed at that period. The largest such acceleration calculated for the characteristic earthquakes on all known active faults within the region shall be used. Analyses were conducted using the average of four Next Generation Attenuation West-2 Relations (2014 NGA), including Chiou & Youngs (2014), Abrahamsom et al. (2014), Boore et al. (2014) and Campbell & Bozorgnia (2014).

Based on our review of the Fault Section Database within the Uniform California Earthquake Rupture Forecast (UCERF 3; Field et al., 2013), published geologic data, and based on the length (combined segments) and maximum magnitude of the San Andreas Fault Zone (southern section) located 1.8 kilometers to the northeast, a moment magnitude (Mw) used for this fault was 8.1.


◆ Site Specific MCE_R (ASCE 7 Section 21.2.3)-

The site-specific MCE_R spectral response acceleration at any period, S_{aM}, shall be taken as the lesser of the spectral response accelerations from the probabilistic ground motions of Section 21.2.1 and the deterministic ground motions of Section 21.2.2. The deterministic ground motions were compared with the probabilistic ground motions that were determined in accordance with Section 21.2.1.

Comparison of Deterministic MCE_R Values with Probabilistic MCE_R Values - Section 21.2.3


Period	Deterministic	Probabilistic		
			Lower Value	
			(Site Specific	Governing Method
Т	MCER	MCER	MCE _{R)}	
0.010	1.05	1.25	1.05	Deterministic Governs
0.020	1.06	1.26	1.06	Deterministic Governs
0.030	1.09	1.31	1.09	Deterministic Governs
0.050	1.21	1.52	1.21	Deterministic Governs
0.075	1.42	1.88	1.42	Deterministic Governs
0.100	1.61	2,36	1.61	Deterministic Governs
0.150	1.90	2.49	1.90	Deterministic Governs
0.200	2.13	2.73	2.13	Deterministic Governs
0.250	2.37	2.96	2.37	Deterministic Governs
0.300	2.56	3.13	2.56	Deterministic Governs
0.400	2.77	3.23	2.77	Deterministic Governs
0.500	2.78	3.17	2.78	Deterministic Governs
0.750	2.49	2.73	2.49	Deterministic Governs
1.000	2.16	2.30	2.16	Deterministic Governs
1.500	1.57	1.58	1.57	Deterministic Governs
2.000	1.18	1.18	1.18	Deterministic Governs
3.000	0.84	0.81	0.81	Probabilistic Governs
4.000	0.63	0.60	0.60	Probabilistic Governs
5.000	0.49	0.48	0.48	Probabilistic Governs
7.500	0.26	0.26	0.26	Deterministic Governs
10.000	0.15	0.16	0.15	Deterministic Governs

These are plotted in the following diagram:

◆ Design Response Spectrum (ASCE 7 Section 21.3)-

In accordance with Section 21.3, the Design Response Spectrum was developed by the following equation: $S_a = 2/3S_{aM}$, where S_{aM} is the MCE_R spectral response acceleration obtained from Section 21.1 or 21.2. The design spectral response acceleration shall not be taken less than 80 percent of S_a . These are plotted and compared with 80% of the CBC Spectrum values in the following diagram:

Design Acceleration Parameters (ASCE 7 Section 21.4)-

Where the site-specific procedure is used to determine the design ground motion in accordance with Section 21.3, the parameter S_{DS} shall obtained from the site-specific spectra at a period of 0.2 s, except that it shall not be taken less than 90 percent of the peak spectral acceleration, S_a , at any period larger than 0.2 s. The parameter S_{D1} shall be taken as the greater of the products of S_a * T for periods between 1 and 5 seconds. The parameters S_{MS} , and S_{M1} shall be taken as 1.5 times S_{DS} and S_{D1} , respectively. The values so obtained shall not be less than 80 percent of the values determined in accordance with Section 11.4.4 for S_{MS} , and S_{M1} and Section 11.4.5 for S_{DS} and S_{D1} .

Site Specific Design Parameters -

For the 0.2 second period (S_{DS}), the maximum average acceleration for any period exceeding 0.2 seconds was 1.86g occurring at T=0.50 seconds. This was multiplied by 0.9 to produce a value of 1.67g making this the applicable value. A value of 1.62g was calculated for S_{D1} at a period of 1 second (ASCE 7-16, 21.4). For the MCE_R 0.2 second period, a value of 2.506g (S_{MS}) was computed, along with a value of 2.429g (S_{M1}) for the MCE_R 1.0 second period was also calculated (ASCE 7-16, 21.2.3).

♦ <u>Site-Specific MCE_G Peak Ground Accelerations (ASCE 7 Section 21.5)</u>-

The probabilistic geometric mean peak ground acceleration (2 percent probability of exceedance within a 50-year period) was calculated as 1.24g. The deterministic geometric mean peak ground acceleration (largest 84^{th} percentile geometric mean peak ground acceleration for characteristic earthquakes on all known active faults within the site region) was calculated as 0.95g. The site-specific MCE_G peak ground acceleration was calculated to be **0.95g**, which was determined by using the lesser of the probabilistic (1.24g) or the deterministic (0.95g) geometric mean peak ground accelerations, but not taken as less than 80 percent of PGA_M (i.e., 1.14g x 0.80 = 0.92g).

SEISMIC DESIGN PARAMETERS SUMMARY

Project:San Bernardino County Fire Station #227Lattitude:34.1601Project #:244073-1Longitude:-117.2866

Date: 7/14/2024

CALIFORNIA BUILDING CODE CHAPTER 16/ASCE7-16

Mapped Acceleration Parameters per ASCE 7-16, Chapter 22

S _s =	2.506	Figure 22-1
S ₁ =	1.002	Figure 22-2

Site Class per Table 20.3-1

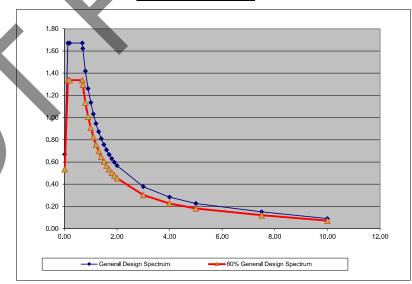
Site Class= D - Stiff Soil

Site Coefficients per ASCE 7-16 CHAPTER 11

F _a = 1	Table 11.4-1	=	1	For Site Specific Analysis per ASCE7-16 21.3
F _v = 1.7	Table 11.4-2	=	2.50	For Site Specific Analysis per ASCE7-16 21.3

Mapped Design Spectral Response Acceleration Parameters

mappea B	colgii opocii ai ricopelico ricocici alicii i	aramotoro .
S _{Ms} =	2.506 Equation 11.4-1	2.506 For Site Specific Analysis per ASCE7-16 21.3
S _{M1} =	1.703 Equation 11.4-2	2.505 For Site Specific Analysis per ASCE7-16 21.3


S _{DS} =	1.671	Equation 11.4-3
S _{D1} =	1.136	Equation 11.4-4

	Sa	80% General	
	(ASCE7-16	Design	
Period (T)	11.4.6)	Spectrum	
0.01	0.67	0.54	
0.14	1.67	1.34	
0.20	1.67	1.34	
0.68	1.67	1.34	
0.70	1.62	1.30	
0.80	1.42	1.14	
0.90	1.26	1.01	
1.00	1.14	0.91	
1.10	1.03	0.83	
1.20	0.95	0.76	
1.30	0.87	0.70	
1.40	0.81	0.65	
1.50	0.76	0.61	
1.60	0.71	0.57	
1.70	0.67	0.53	
1.80	0.63	0.50	
1.90	0.60	0.48	
2.00	0.57	0.45	
3.00	0.38	0.30	
4.00	0.28	0.23	
5.00	0.23	0.18	
7.50	0.15	0.12	
10.00	0.09	0.07	

$T_0 =$	0.136	sec
T _S =	0.680	sec
T _L =	8	sec
PGA	1.04	g
F _{PGA} =	1.1	
C _{RS} =	0.905	
C _{R1} =	0.884	

From Fig 22-12

From Table 11.8-1
Figure 22-17
Figure 22-18

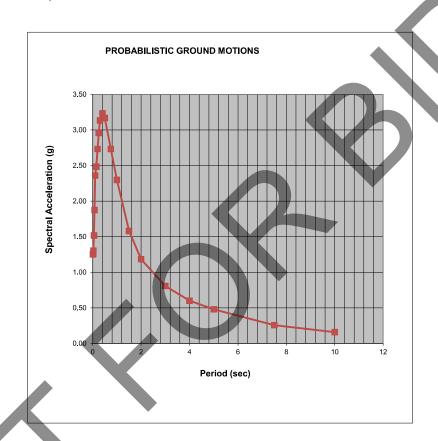
ASCE 7-16 - RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION ANALYSIS

Use Maximum Rotated Horizontal Component?* (Y/N)

Υ

Presented data are the average of Chiou & Youngs (2014), Abrahamson et. al. (2014), Boore et. al (2014) and Campbell & Bozorgnia (2014) NGA West-2 Relat Earthquake Rupture Forecast - UCERF3 Mean, FM 3.1 & 3.2

PROBABILISTIC MCER per 21.2.1.1 Method 1


Risk Coefficients taken from Figures 22-18 and 22-19 of ASCE 7-16

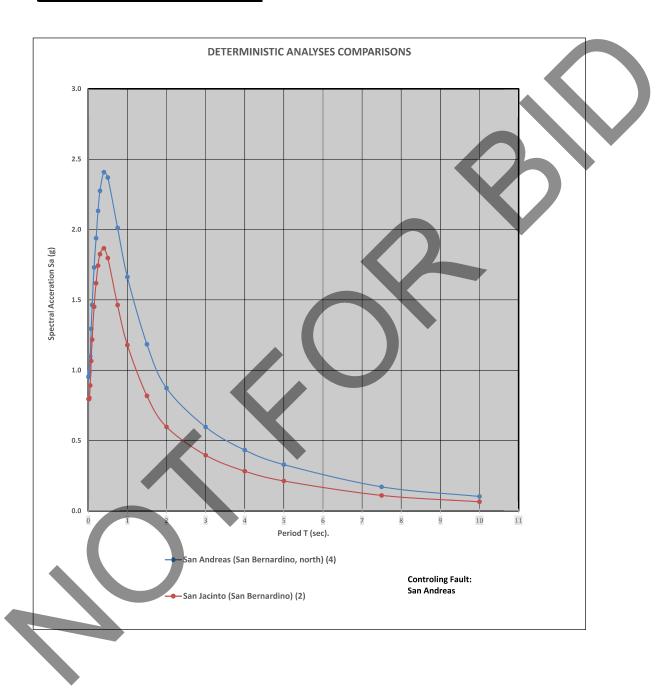
OpenSHA data

2% Probability Of Exceedance in 50 years

Maximum Rotated Horizontal Component determined per ASCE7-16

	Sa	
Т	2% in 50	<u>MCER</u>
0.01	1.39	1.25
0.02	1.39	1.26
0.03	1.44	1.31
0.05	1.68	1.52
0.08	2.07	1.88
0.10	2.37	2.36
0.15	2.75	2.49
0.20	3.02	2.73
0.25	3.27	2.96
0.30	3.47	3.13
0.40	3.59	3.23
0.50	3.53	3.17
0.75	3.07	2.73
1.00	2.60	2.30
1.50	1.79	1.58
2.00	1.34	1.18
3.00	0.92	0.81
4.00	0.68	0.60
5.00	0.54	0.48
7.50	0.29	0.26
10.00	0.18	0.16

S _s =	3.02		2.73
S ₁ =	2.60		2.30
PGA	1.24	g	


Risk Coefficie	nts:		
C_{RS}	0.905	Figure 22-18	Get from Mapped Values
C _{R1}	0.884	Figure 22-19	
Fa=		Table 11.4-1	Per ASCE7-16 - 21.2.3
Is Sa _(max) <1.22	XFa?	NO	If "YES". Probabilistic Spectrum prevails

DETERMINISTIC MCE per 21.2.2

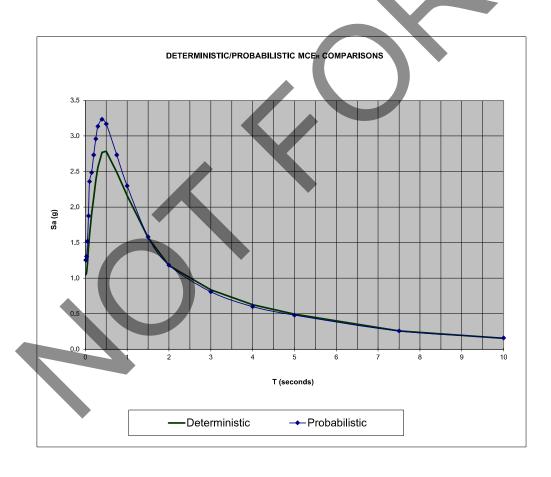
Preliminary Assessment:

Fault	Distance (km)
San Andreas (San Bernardino, north) (4)	1.80
San Jacinto (San Bernardino) (2)	6.30

The Probalistic Analyses revealed 5 faults contributing more than 10% to the seismic hazard. These were considered in the Deterministic Analyses along with the Newport-Inglewood Fault.

		San Andreas	San Jacinto
Input Para		(San	(San
	meters	Bernardino,	Bernardino)
Fault		north) (4)	(2)
M	= Moment magnitude	8.1	7.8
R _{RUP}	Closest distance to coseismic rupture (km)	1.8	6.3
R_{JB}	Closest distance to surface projection of coseismic rupture (km)	1.8	6.3
Rx	Horizontal distance to top edge of rupture measured perpendicular to strike (km)	1.8	6.3
U	= Unspecified Faulting Flag (Boore et.al.)	0	0
F _{RV}	 Reverse-faulting factor: 0 for strike slip, normal, normal-oblique; 1 for reverse, reverse oblique and thrust 	0	0
F _{NM}	= Normal-faulting factor: 0 for strike slip, reverse, reverse-oblique and thrust; 1 for normal and normal-oblique	0	0
F _{HW}	= Hanging-wall factor: 1 for site on down-dip side of top of rupture; 0 otherwise, used in AS08 and CY08	0	0
Z_{TOR}	= Depth to top of coseismic rupture (km)	0	0
δ	= Average dip of rupture plane (degrees)	90	90
V _{S30}	= Average shear-wave velocity in top 30m of site profile	327.7	327.7
F _{Measured}		1	1
Z _{1.0}	= Depth to Shear Wave Velocity of 1.0 km/sec (km)	0.25	0.25
Z _{2.5}	= Depth to Shear Wave Velocity of 2.5 km/sec (km)	0.35	0.35
Site Class		D	D
W (km)	= Fault rupture width (km)	12.5	16.5
FAS	= 0 for mainshock; 1 for aftershock	0	0
σ	=Standard Deviation	1	1

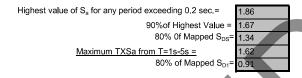
Deterministic Summary - Section 21.2.2 (Supplement 1)


Т	San Andreas (San Bernardino, north) (4)	San Jacinto (San Bernardino) (2)	Maximum S _a	Corrected* S _a (per ASCE7-16)	Scaled S _{a(Average)}	Controlling Fault
0.010	0.95	0.80	0.95	1.05	1.05	San Andreas (San
0.020	0.96	0.79	0.96	1.06	1.06	San Andreas (San
0.030	0.99	0.80	0.99	1.09	1.09	San Andreas (San
0.050	1.10	0.89	1.10	1.21	1.21	San Andreas (San
0.075	1.29	1.07	1.29	1.42	1.42	San Andreas (San
0.100	1.46	1.22	1.46	1.61	1.61	San Andreas (San
0.150	1.73	1.45	1.73	1.90	1.90	San Andreas (San
0.200	1.94	1.62	1.94	2.13	2.13	San Andreas (San
0.250	2.13	1.74	2.13	2.37	2.37	San Andreas (San
0.300	2.28	1.83	2.28	2.56	2.56	San Andreas (San
0.400	2.41	1.87	2.41	2.77	2.77	San Andreas (San
0.500	2.37	1,80	2.37	2.78	2.78	San Andreas (San
0.750	2.01	1.46	2.01	2.49	2.49	San Andreas (San
1.000	1.66	1.18	1.66	2.16	2.16	San Andreas (San
1.500	1.19	0.82	1.19	1.57	1.57	San Andreas (San
2.000	0.87	0.60	0.87	1.18	1.18	San Andreas (San
3.000	0.60	0.40	0.60	0.84	0.84	San Andreas (San
4.000	0.43	0.28	0.43	0.63	0.63	San Andreas (San
5.000	0.33	0.21	0.33	0.49	0.49	San Andreas (San
7.500	0.17	0,11	0.17	0.26	0.26	San Andreas (San
10,000	0.10	0.07	0.10	0.15	0.15	San Andreas (San
PGA	0.95	0.76	0.95		0.95	9
Max Sa= Fa = 1.5XFa=	2.78 1.00 1.5	Per ASCE7-16	21.2.2			
Scaling						

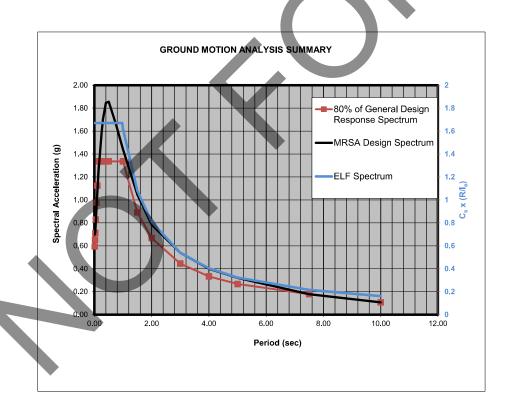
* Correction is the adjustment for Maximum Rotated Value if Applicable

$\textbf{SITE SPECIFIC MCE}_{R} \textbf{ - Compare Deterministic MCE}_{R} \textbf{ Values (S}_{a}) \textbf{ with Probabilistic MCE}_{R} \textbf{ Values (S}_{a}) \textbf{ per 21.2.3}$

Presented data are the average of Chiou & Youngs (2014), Abrahamson et. al. (2014), Boore et. al (2014) and Campbell & Bozorgnia (2014) NGA West-2 Relat

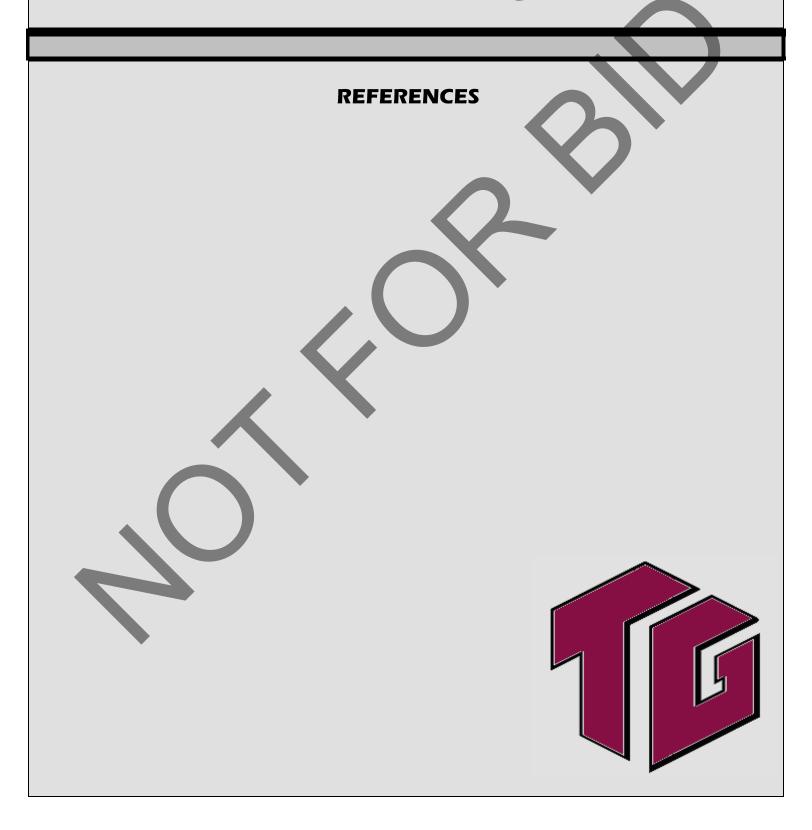

Б	D	D 1 122 0		
Period T	Deterministic MCE _R	Probabilistic MCE _R	Lower Value (Site Specific MCE _{R)}	Governing Method
0.010	1.05	1.25	1.05	Deterministic Governs
0.020	1.06	1.26	1.06	Deterministic Governs
0.030	1.09	1.31	1.09	Deterministic Governs
0.050	1.21	1.52	1.21	Deterministic Governs
0.075	1.42	1.88	1.42	Deterministic Governs
0.100	1.61	2.36	1.61	Deterministic Governs
0.150	1.90	2.49	1.90	Deterministic Governs
0.200	2.13	2.73	2.13	Deterministic Governs
0.250	2.37	2.96	2.37	Deterministic Governs
0.300	2.56	3.13	2.56	Deterministic Governs
0.400	2.77	3.23	2.77	Deterministic Governs
0.500	2.78	3.17	2.78	Deterministic Governs
0.750	2.49	2.73	2.49	Deterministic Governs
1.000	2.16	2.30	2.16	Deterministic Governs
1.500	1.57	1.58	1.57	Deterministic Governs
2.000	1.18	1.18	1.18	Deterministic Governs
3.000	0.84	0.81	0.81	ProbabilisticGoverns
4.000	0.63	0.60	0.60	ProbabilisticGoverns
5.000	0.49	0.48	0.48	ProbabilisticGoverns
7.500	0.26	0.26	0.26	Deterministic Governs
10.000	0.15	0.16	0.15	Deterministic Governs

DESIGN RESPONSE SPECTRUM per Section 21.3


DESIGN ACCELERATION PARAMETERS per Section 21.4 (MRSA)

DESIGN A	CCELERATI	ON PARAME	ERS per Section	on 21.4 (MRSA)
Period	2/3*MCE _R	80% General Design Response Spectrum (per ASCE 7- 16 23.3-1)	Design Response Spectrum	TXSa
0.01	0.70	0.57	0.70	
0.02	0.71	0.61	0.71	
0.03	0.72	0.65	0.72	
0.05	0.81	0.74	0.81	
0.08	0.95	0.84	0.95	
0.10	1.07	0.94	1.07	
0.15	1.27	1.14	1.27	
0.20	1.42	1.34	1.42	
0.25	1.58	1.34	1.58	
0.30	1.71	1.34	1.71	
0.40	1.85	1.34	1.85	
0.50	1.86	1.34	1.86	
0.75	1.66	1.34	1.66	
1.00	1.44	1.34	1.44	1.44
1.50	1.05	0.89	1.05	1.57
2.00	0.79	0.67	0.79	1.57
3.00	0.54	0.45	0.54	1.62
4.00	0.40	0.33	0.40	1.60
5.00	0.32	0.27	0.32	1.60
7.50	0.17	0.18	0.18	
10.00	0.10	0.11	0.11	

S_{DS}= 1.67


01		4	1011	21.126
Ts=	0.97			
	PGA Determin	nation:		
	Site Coe	efficient F _{PGA} =	Y A	1.1
	M	lapped PGA=	1	.04 Figure 22-7
		PGA _M =	7	,14 g
	Determ	iinistic PGA =	0	.95 g
	Probal	bilistic PGA =	1	.24 g
Lesser of	f Deterministic/F	robabilistic =	0	.95 g
`	8	0% of PGA _M ₌	0	.92 g
		MCE_G PGA=	0	.95 g

SUMMARY OF SITE SPECIFIC GROUND MOTION HAZARD ANALYSIS DATA

1	2	3		4	5	6	7	8	9	10	11	12
								_				
							Probabilistic		2/3 Site	80% of	Site	
	Mapped	Mapped		Risk	Scaled MCE _R	Probabilistic	w/Risk	84th Percentile	Specific	General	Specific	Design
Period	MCE _R	Design	Period	Coefficient	Deterministic	MCE _R	Coeffcicent	Deterministic	MCER	Design	MCE _R	Response
(sec)	Spectrum	Spectrum	(sec)	C _R	Spectrum	Spectrum	C _R	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum
, ,	-				· ·	·	**	· ·			*	•
0.01	1.00	0.67	0.01	0.905	1.05	1.25	1.25	1.05	0.70	0.57	1.05	0.70
0.14	2.51	1.67	0.02	0.905	1.06	1.26	1.26	1.06	0.71	0.61	1.06	0.71
0.20	2.51	1.67	0.03	0.905	1.09	1.31	1.31	1.09	0.72	0.65	1.09	0.72
0.68	2.51	1.67	0.05	0.905	1.21	1.52	1.52	1.21	0.81	0.74	1.21	0.81
0.70	2.43	1.62	0.08	0.905	1.42	1.88	1.88	1.42	0.95	0.84	1.42	0.95
0.80	2.13	1.42	0.10	0.905	1.61	2.36	2.36	1.61	1.07	0.94	1.61	1.07
0.90	1.89	1.26	0.15	0.905	1.90	2.49	2.49	1.90	1.27	1.14	1.90	1.27
1.00	1.70	1.14	0.20	0.905	2.13	2.73	2.73	2.13	1.42	1.34	2.13	1.42
1.10	1.55	1.03	0.25	0.904	2.37	2,96	2.96	2.37	1.58	1.34	2.37	1.58
1.20	1.42	0.95	0.30	0.902	2.56	3.13	3.13	2.56	1.71	1.34	2.56	1.71
1.30	1.31	0.87	0.40	0.900	2.77	3.23	3.23	2.77	1.85	1.34	2.77	1.85
1.40	1.22	0.81	0.50	0.897	2.78	3.17	3.17	2.78	1.86	1.34	2.78	1.86
1.50	1.14	0.76	0.75	0.891	2.49	2.73	2.73	2.49	1.66	1.34	2.49	1.66
1.60	1.06	0.71	1.00	0.884	2.16	2.30	2.30	2.16	1.44	1.34	2.16	1.44
1.70	1.00	0.67	1.50	0.884	1.57	1.58	1.58	1.57	1.05	0.89	1.57	1.05
1.80	0.95	0.63	2.00	0.884	1.18	1.18	1.18	1.18	0.79	0.67	1.18	0.79
1.90	0.90	0.60	3.00	0.884	0.84	0.81	0.81	0.84	0.54	0.45	0.81	0.54
2.00	0.85	0.57	4.00	0.884	0.63	0.60	0.60	0.63	0.40	0.33	0.60	0.40
3.00	0.57	0.38	5.00	0.884	0.49	0.48	0.48	0.49	0.32	0.27	0.48	0.32
4.00	0.43	0.28	7.50	0.884	0.26	0.26	0.26	0.26	0.17	0.18	0.27	0.18
5.00	0.34	0.23	10.00	0.884	0.15	0.16	0.16	0.15	0.10	0.11	0.16	0.11
7.50	0.23	0.15				I.	ı	l.				
10.00	0.14	0.09										

APPENDIX C

REFERENCES

American Society of Civil Engineers (ASCE), 2017, Minimum Design Loads and Associated Criteria for Buildings and other Structures, ASCE Standard 7-16, 889pp.

Blake, T.F. 1989-2000, EQFAULT, A computer program for the deterministic prediction of peak horizontal acceleration from digitized California faults, Version 2.03, revised 1993.

Blake, T.F. 1989-2021, EQSEARCH, A computer program for the estimation of peak horizontal acceleration from Southern California Historical Earthquake Catalog, Version 3.00b, database updated June 2021.

Boore, D.M., Joyner, W.B., and Fumal, T.E., 1997, Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work, *in*, Seismological Research Letters, Volume 68, pp. 128-153.

California Building Standards Commission (CBSC), 2022, 2022 California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2.

California Department of Water Resources (CDWR), 1967, Progress Report on Ground Water Geology of the Coastal Plain of Orange County, 138 pp.

California Department of Water Resources (C.D.W.R.), 2024a, California Dam Inundation Maps, https://fmds.water.ca.gov/maps/damim/.

California Department of Water Resources (C.D.W.R.), 2024b, California Statewide Groundwater Elevation Monitoring System (CASGEM) Online System-Public Portal, https://www.casgem.water.ca.gov/OSS/(S(55)cplfqqslsga0raytn2oln))/Public/ApplicationHome.aspx.

California Division of Mines & Geology (C.D.M.G.), 1986, "Guidelines to Geologic/Seismic Reports," Note No. 42.

California Division of Mines & Geology (C.D.M.G.), 1996, Probabilistic Seismic Hazard Assessment for the State of California, C.D.M.G. Open File Report 96-08.

California Division of the State Architect (DSA), 2023, Geohazard Reports Requirements: 2022 CBC, Interpretation of Regulations Document IR A-4, 7 pp.

California Geological Survey (C.G.S.), 2008, Guidelines for Evaluating and Mitigating Seismic Hazards, in California C.D.M.G. Special Publication 117.

California Geological Survey (C.G.S.), 2018, Earthquake Fault Zones: A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California, CGS Special Publication 42, 93 pp.

California Geological Survey (C.G.S), 2022, Checklist for the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings, Note 48, November 2022, 2 pp.

California's Office of Statewide Health Planning and Development (OSHPD), 2024, OSHPD Seismic Design Maps Tool web application, https://seismicmaps.org/.

California State Board for Geologists and Geophysicists, Department of Consumer Affairs, 1998, Guidelines for Geophysical Reports for Environmental and Engineering Geology, 5 pp.

Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C.J., 2003, The Revised 2002 California Probabilistic Seismic Hazard Maps, June 2003, California Geological Survey.

Carson, Scott E., and Matti, Jonathan C., 1986, Contour Map Showing Minimum Depth to Groundwater, San Bernardino Valley and Vicinity, California, 1973-1983, U.S.G.S. Open File Report 86-169, 44 pp.

Catchings, R.D., Rymer, M.J., Goldman, M.R., and Steedman, C.É., 2008, Structure of the San Bernardino Basin Along Two Seismic Transects: Rialto-Colton fault to the San Andreas Fault and Along the I-215 Freeway (I-10 to SR30), U.S.G.S Open-File Report 2008-1197, 129 pp.

City of San Bernardino, 2005, San Bernardino General Plan, Safety, Chapter 10, 50 pp.

Dutcher, L.C., and Garrett, A.A., 1963, Geologic and Hydrologic Features of the San Bernardino Area, California, U.S.G.S. Water Supply Paper 1419.

Fife, D.L., and Morton, D.M., 1976, "Geologic Hazards in Southwestern San Bernardino County, California," California Division of Mines & Geology Special Report No. 113.

Field, E.H., et al., 2013, Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time-Independent Model, U.S.G.S. Open-File Report 2103-1165, CGS Special Report 228, and Southern California Earthquake Center Publication 1792.

Geometrics, Inc., 2012, StrataVisor™ NZXP Operation and Reference Manual, Revision M, Software Version 9.3, San Jose, California, 226 pp.

Geometrics, Inc., 2021, Seislmager/SW Analysis of Surface Waves, Pickwin Version 6.0.2.1. and WaveEq Version 5.2.6.0.

Google™ Earth, 2024, http://earth.google.com/, Version 7.3.6.9796 (64-bit).

Inland Foundation Engineering, Inc, 2024, Log of Borings B-01 through B-04, IFE Project No. S168-193, dated July 11, 2024.

Louie, J.N., 2001, Faster, Better: Shear-Wave Velocity to 100 Meters Depth From Refraction Microtremor Arrays, *in*, Bulletin of the Seismological Society of America, Volume 91, pp. 347-364.

Martin, R.C., and Davis, J.F., 1982, Status of Volcanic Prediction and Emergency Response Capabilities in Volcanic Hazard Zones of California, C.D.M.G. Special Publication 63.

Matti, J.C., and Carson, S.E., 1991, Liquefaction Susceptibility in the San Bernardino Valley and Vicinity, Southern California, A Regional Evaluation, U.S.G.S. Bulletin 1898.

Matti, J.C., Morton, D.M., and Cox, B.F., 1985, Distribution and Geologic Relations of Fault Systems in the Vicinity of the Central Transverse Ranges, Southern California, U.S.G.S. Open File Report 85-365.

Okada, H., 2003, The Microtremor Survey Method, Society of Exploration Geophysicists, Geophysical Monograph Series Number 12, 135 pp.

Park, C.B, Milner, R.D., Rynden, N., Xia, J., and Ivanov, J., 2005, Combined use of Active and Passive Surface Waves, *in*, Journal of Environmental and Engineering Geophysics, Volume 10, Issue 3, pp. 323-334.

Petersen, M.D. et al., 2008, Documentation for the 2008 Update of the United States National Seismic Hazard Maps, United States Geological Survey Open-File Report 2008-1128.

Sydnor, R.H., 2004, Engineering Geology and Seismology for Public School and Hospitals; to Accompany California Geological Survey Note 48 Checklist, 264 pp.

Toppozada, T.R., et al., 1981, Preparation of Isoseismal Maps and Summaries of Reported Effects for pre-1900 California Earthquakes, C.D.M.G. Open File Report 81-11.

Toppozada, T.R., and Parke, D.L., 1982, Areas Damaged by California Earthquakes, 1900 - 1949, C.D.M.G. Open File Report 82-17.

United States Army Corps of Engineers, 2024, National Inventory of Dams, Website Version 3.21.0; API Version 3.21.0, https://nid.sec.usace.army.mil/#/.

United States Environmental Protection Agency (EPA), 1993, EPA's Map of Radon Zones, California, Manual 402-R-93-025, 78 pp.

United States Geological Survey (U.S.G.S.), 2021, Hazard Spectrum Application, Version 1.5.2, http://opensha.org.

United States Geological Survey (U.S.G.S.), 2024a, ANSS Comprehensive Earthquake Catalog (ComCat), https://earthquake.usgs.gov/data/comcat/.

United States Geological Survey (U.S.G.S.), 2024b, Quaternary Faults and Folds in the U.S. database, https://earthquake.usgs.gov/static/lfs/nshm/qfaults/qfaults.kmz.

United States Geological Survey (U.S.G.S.), 2024c, National Water Information Service: Web Interface, Groundwater Levels for the Nation, updated June 2024 http://nwis.waterdata.usgs.gov/nwis/gwlevels?.

Xia, J., Miller, R.D., and Park, C.B., 1999, Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave: Geophysics, v. 64, p.691-700.

MAPS UTILIZED

California Division of Mines & Geology (C.D.M.G.), 1969, Geologic Map of California, San Bernardino Sheet, Scale 1: 250,000.

California Geological Survey (CGS), 2010, Geologic Compilation of Quaternary Surficial Deposits in Southern California, San Bernardino 30' X 60' Quadrangle, CGS Special Report 217, Plate 13, Scale 1: 100,000.

California Division of Mines and Geology, 1974, San Bernardino North Special Studies Zone Quadrangle, Revised Official Map, Scale 1: 24,000.

California Geological Survey, 2014, Tsunami Inundation Maps, California Department of Conservation, http://www.quake.ca.gov/gmaps/tsunami/tsunami maps.htm.

Carson, S.E. and Matti, J.C., 1985 Contour Map Showing Minimum Depth to Groundwater, Upper Santa Ana River Valley, California, 1973-1979, U.S.G.S. Miscellaneous Field Studies Map MF 1802.

Dibblee, T.W., Jr., 2004, Geologic Map of the San Bernardino North / North ½ of San Bernardino South Quadrangles, San Bernardino and Riverside Counties, California, Dibblee Geologic Foundation Map #127, Scale 1: 24,000.

Federal Emergency Management Agency (FEMA), 2008, Community Panel No. 06071C 7945H, September 26, 2008, Scale 1: 24,000.

Gutierrez, C., Bryant, W.A., Saucedo, G., and Wills, C., 2010, Fault Activity Map of California, Scale 1: 750,000, California Geological Survey, Geologic Data Map No. 6. Scale 1:750,000.

Jennings, C.W., 1994, Fault Activity Map of California and Adjacent Areas, Scale 1: 750,000, C.D.M.G. Geologic Data Map No. 8.

Miller, F.K., Matti, J.C., and Carson, S.E., 2001, Geologic Map of the San Bernardino North Quadrangle, San Bernardino County, California, U.S.G.S., Open File Report 01-131, Scale 1: 24,000.

Morton, D.M. and Miller, F.K., 2003, Preliminary Geologic Map of the San Bernardino 30' x 60' Quadrangles, California, Scale 1: 100,000, U.S.G.S. Open-File Report 03-293, 5 sheets, Version 1.0.

Morton, D.M. and Miller, F.K., 2006, Preliminary Geologic Map of the San Bernardino and Santa Ana 30' x 60' Quadrangles, California, Scale 1: 100,000, U.S.G.S. Open-File Report 2006-1217, 6 sheets, Version 1.0.

San Bernardino County, 2018, Little Mountain Dam Inundation Map (Based on 100-year Storm- Induced Failure), State Dam ID: 87.005.

Attachment G

NOAA Precipitation Frequency

NOAA Atlas 14, Volume 6, Version 2 Location name: San Bernardino, California, USA* Latitude: 34.1604°, Longitude: -117.2868° Elevation: 1288 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

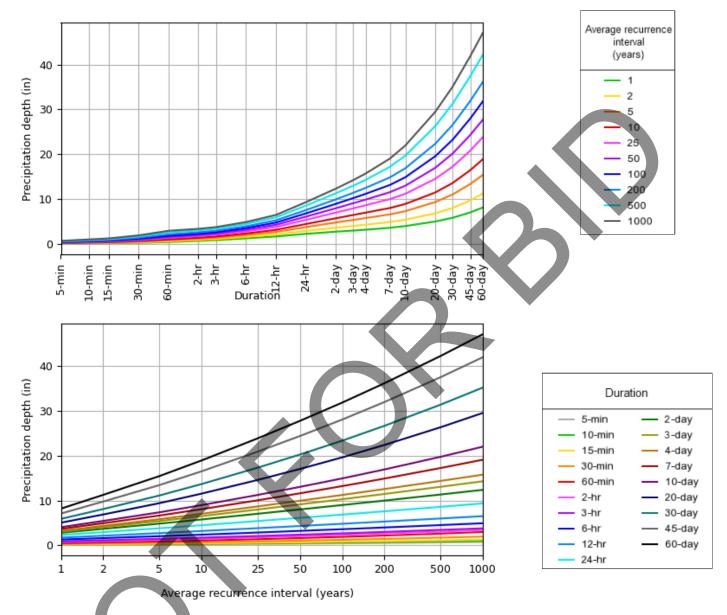
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹								nes) ¹	
Duration				Averaç	ge recurrenc	e interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.124 (0.103-0.151)	0.165 (0.137-0.201)	0.222 (0.184-0.271)	0.273 (0.224-0.336)	0.347 (0.275-0.441)	0.408 (0.317-0.531)	0.475 (0.360-0.633)	0.548 (0.404-0.752)	0.656 (0.463-0.939)	0.747 (0.509-1.11)
10-min	0.178 (0.148-0.217)	0.237 (0.196-0.288)	0.319 (0.264-0.389)	0.391 (0.321-0.481)	0.497 (0.394-0.633)	0.585 (0.454-0.761)	0.681 (0.516-0.908)	0.786 (0.579-1.08)	0.941 (0.664-1.35)	1.07 (0.729-1.59)
15-min	0.216 (0.179-0.262)	0.286 (0.237-0.348)	0.386 (0.319-0.470)	0.473 (0.388-0.582)	0.601 (0.477-0.765)	0.707 (0.549-0.920)	0.823 (0.623-1.10)	0.951 (0.700-1.30)	1.14 (0.803-1.63)	1.30 (0.882-1.92)
30-min	0.328 (0.273-0.398)	0.435 (0.361-0.529)	0.586 (0.485-0.715)	0.718 (0.590-0.884)	0.913 (0.724-1.16)	1.08 (0.835-1.40)	1.25 (0.947-1.67)	1.44 (1.06-1.98)	1.73 (1.22-2.47)	1.97 (1.34-2.92)
60-min	0.498 (0.414-0.605)	0.660 (0.548-0.803)	0.890 (0.737-1.09)	1.09 (0.895-1.34)	1.39 (1.10-1.76)	1.63 (1.27-2.12)	1.90 (1.44-2.53)	2.19 (1.61-3.01)	2.62 (1.85-3.76)	2.99 (2.03-4.43)
2-hr	0.741 (0.616-0.901)	0.946 (0.785-1.15)	1.22 (1.01-1.49)	1.46 (1.20-1.80)	1.80 (1.43-2.29)	2.07 (1.60-2.69)	2.35 (1.78-3.13)	2.65 (1.95-3.64)	3.08 (2.18-4.41)	3.43 (2.34-5.09)
3-hr	0.910 (0.757-1.11)	1.14 (0.951-1.39)	1.46 (1.21-1.78)	1.72 (1.42-2.12)	2.09 (1.66-2.67)	2.39 (1.85-3.10)	2.69 (2.04-3.58)	3.01 (2.21-4.13)	3.45 (2.44-4.94)	3.81 (2.59-5.65)
6-hr	1.31 (1.09-1.59)	1.63 (1.35-1.98)	2.05 (1.70-2.50)	2.39 (1.96-2.94)	2.87 (2.27-3.65)	3.23 (2.51-4.20)	3.60 (2.73-4.81)	3.99 (2.94-5.48)	4.52 (3.19-6.47)	4.93 (3.36-7.31)
12-hr	1.73 (1.43-2.10)	2.16 (1.80-2.64)	2.74 (2.27-3.34)	3.21 (2.63-3.94)	3.84 (3.04-4.88)	4.32 (3.36-5.62)	4.81 (3.64-6.41)	5.31 (3.91-7.29)	5.99 (4.22-8.57)	6.51 (4.44-9.66)
24-hr	2.31 (2.05-2.66)	2.96 (2.62-3.41)	3.81 (3.36-4.40)	4.49 (3.93-5.24)	5.42 (4.59-6.53)	6.13 (5.09-7.54)	6.85 (5.55-8.63)	7.59 (5.98-9.82)	8.58 (6.49-11.6)	9.35 (6.84-13.0)
2-day	2.80 (2.48-3.22)	3.68 (3.26-4.25)	4.84 (4.27-5.60)	5.77 (5.05-6.73)	7.04 (5.96-8.48)	8.00 (6.64-9.84)	8.98 (7.27-11.3)	9.98 (7.86-12.9)	11.3 (8.57-15.3)	12.4 (9.04-17.2)
3-day	3.04 (2.69-3.50)	4.07 (3.60-4.70)	5.42 (4.78-6.27)	6.51 (5.70-7.59)	7.99 (6.77-9.62)	9.12 (7.57-11.2)	10.3 (8.32-12.9)	11.4 (9.02-14.8)	13.0 (9.86-17.6)	14.3 (10.4-19.9)
4-day	3.22 (2.86-3.71)	4.35 (3.85-5.02)	5.83 (5.14-6.74)	7.03 (6.16-8.20)	8.68 (7.35-10.5)	9.94 (8.25-12.2)	11.2 (9.09-14.1)	12.5 (9.89-16.2)	14.3 (10.9-19.3)	15.7 (11.5-22.0)
7-day	3.66 (3.24-4.22)	4.94 (4.37-5.69)	6.64 (5.86-7.68)	8.06 (7.06-9.40)	10.0 (8.50-12.1)	11.6 (9.61-14.2)	13.2 (10.7-16.6)	14.9 (11.7-19.3)	17.2 (13.0-23.2)	19.1 (13.9-26.6)
10-day	4.05 (3.58-4.66)	5.45 (4.82-6.29)	7.36 (6.49-8.51)	8.96 (7.84-10.4)	11.2 (9.50-13.5)	13.0 (10.8-16.0)	14.9 (12.1-18.8)	16.9 (13.3-21.9)	19.7 (14.9-26.6)	22.0 (16.1-30.6)
20-day	5.05 (4.48-5.82)	6.88 (6.09-7.94)	9.39 (8.28-10.9)	11.5 (10.1-13.4)	14.6 (12.3-17.5)	17.0 (14.1-20.9)	19.6 (15.9-24.7)	22.4 (17.6-28.9)	26.3 (19.9-35.4)	29.5 (21.6-41.1)
30-day	5.90 (5.22-6.80)	8.09 (7.16-9.33)	11.1 (9.79-12.8)	13.6 (11.9-15.9)	17.3 (14.6-20.8)	20.2 (16.8-24.9)	23.3 (18.9-29.4)	26.6 (21.0-34.5)	31.3 (23.7-42.2)	35.1 (25.7-49.0)
45-day	7.09 (6.28-8.16)	9.76 (8.63-11.3)	13.4 (11.8-15.5)	16.5 (14.4-19.2)	20.8 (17.7-25.1)	24.3 (20.2-29.9)	28.0 (22.7-35.3)	31.9 (25.1-41.3)	37.4 (28.3-50.5)	41.9 (30.6-58.4)
60-day	8.17 (7.24-9.41)	11.2 (9.95-13.0)	15.4 (13.6-17.8)	18.9 (16.5-22.0)	23.8 (20.2-28.7)	27.7 (23.0-34.1)	31.8 (25.7-40.0)	36.1 (28.4-46.7)	42.1 (31.9-56.8)	47.0 (34.4-65.6)

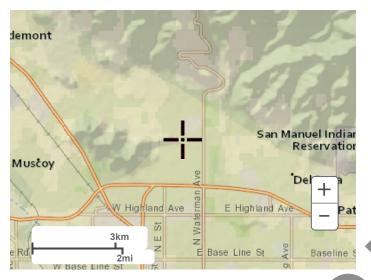

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

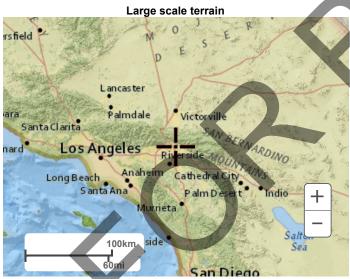
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

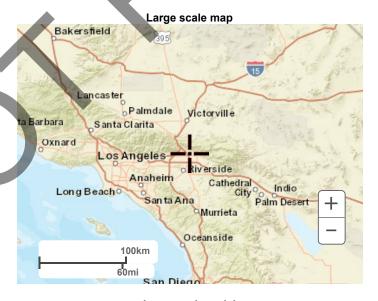
Please refer to NOAA Atlas 14 document for more information.

Back to Top

PDS-based depth-duration-frequency (DDF) curves Latitude: 34.1604°, Longitude: -117.2868°


NOAA Atlas 14, Volume 6, Version 2


Created (GMT): Thu Oct 17 13:56:02 2024

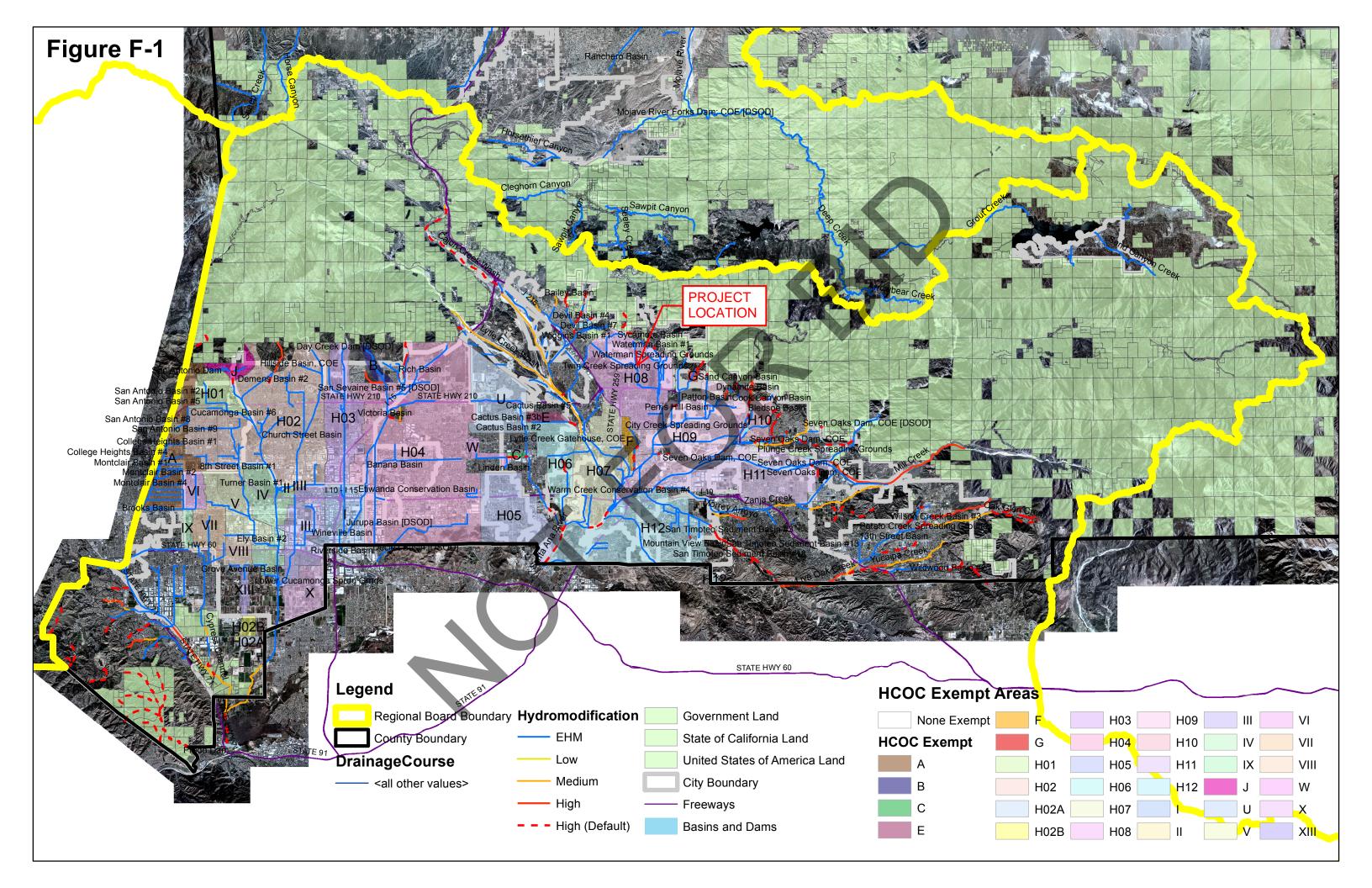

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial




Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Attachment H HCOC Exemption

Hydromodification

A.1 Hydrologic Conditions of Concern (HCOC) Analysis

HCOC Exemption:

- Sump Condition: All downstream conveyance channel to an adequate sump (for example, Prado Dam, Santa Ana River, or other Lake, Reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Sensitivity Maps.
- 2. <u>Pre = Post</u>: The runoff flow rate, volume and velocity for the post-development condition of the Priority Development Project do not exceed the pre-development (i.e, naturally occurring condition for the 2-year, 24-hour rainfall event utilizing latest San Bernardino County Hydrology Manual.
 - a. Submit a substantiated hydrologic analysis to justify your request.
- 3. <u>Diversion to Storage Area</u>: The drainage areas that divert to water storage areas which are considered as control/release point and utilized for water conservation.
 - a. See Appendix F for the HCOC Exemption Map and the on-line Watershed Geodatabase (http://sbcounty.permitrack.com/wap) for reference.
- 4. <u>Less than One Acre</u>: The Priority Development Project disturbs less than one acre. The Co-permittee has the discretion to require a Project Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The project disturbs less than one acre and is not part of a common plan of development.
- 5. <u>Built Out Area</u>: The contributing watershed area to which the project discharges has a developed area percentage greater than 90 percent.
 - a. See Appendix F for the HCOC Exemption Map and the on-line Watershed Geodatabase (http://sbcounty.permitrack.com/wap) for reference.

Summary of HCOC Exempted Area

<u> </u>	HCOC Exemption reasoning						
	1	2	3	4	5		
Area							
Α			X		X		
В			X				
С					X		
E			X				
F					Х		
G			X		X		
H01	Х		Х				
H02	Х		Х				
H02A	Х		Х				
H02B			Х				
H03			Х				
H04	Х		Х				
H05	Х			N.			
H06			X				
H07	Х						
H08	Х		Х				
H09	Х						
H10	Х		Х				
H11	Х		Х				
H12	Х						
J			Х				
U			Х				
W	_		Х				
1			Х				
П			Х				
Ш					Х		
IV			Х		Х		
V			X*				
VI					Х		
VII					Х		
VIII			Х				
IX					Х		
Х			Х				
XIII			Х				

^{*}Detention/Conservation Basin

Attachment I

Maintenance Agreement and Inspection Guidelines

RECORDING REQUESTED BY:

County of San Bernardino Department of Public Works

AND WHEN RECORDED MAIL TO:

County of San Bernardino Department of Public Works 825 E. Third Street, Room 117 San Bernardino, CA 92415-0835

SPACE ABOVE THIS LINE FOR RECORDER'S USE

COVENANT AND AGREEMENT REGARDING WATER QUALITY MANAGEMENT PLAN AND STORMWATER BEST MANAGEMENT PRACTICES TRANSFER, ACCESS AND MAINTENANCE

THIS PAGE ADDED TO PROVIDE ADEQUATE SPACE FOR RECORDING INFORMATION

Covenant and Agreement Regarding Water Quality Management Plan and Stormwater Best Management Practices Transfer, Access and Maintenance

OWNER NAME:	
PROPERTY ADDRESS:	
APN:	
THIS AGREEMENT is made and entered into in	
	,California, thisday of
	, by and between
	, hereinafter
referred to as Owner, and the COUNTY OF SAN State of California, hereinafter referred to as "the WHEREAS, the Owner owns real property ("Pro California, more specifically described in Exhibit exhibits is attached hereto and incorporated here	e County"; perty") in the County of San Bernardino, State of "A" and depicted in Exhibit "B", each of which
WHEREAS, at the time of initial approval of deve	elopment project known as
the County required the project to employ Best M "BMPs," to minimize pollutants in urban runoff; a	within the Property described herein, //anagement Practices, hereinafter referred to as nd
WHEREAS, the Owner has chosen to install and Quality Management Plan, dated	, on file with the County and referred to as "WQMP", to minimize pollutants
WHEREAS, said WQMP has been certified by the	ne Owner and reviewed and approved by the

WHEREAS, the Owner is aware that periodic and continuous maintenance, including, but not necessarily limited to, filter material replacement and sediment removal, is required to assure peak performance of all BMPs in the WQMP and that, furthermore, such maintenance activity will require compliance with all Local, State, or Federal laws and regulations, including those pertaining to confined space and waste disposal methods, in effect at the time such maintenance occurs.

NOW THEREFORE, it is mutually stipulated and agreed as follows:

- 1. Owner shall comply with the WQMP.
- 2. All maintenance or replacement of BMPs proposed as part of the WQMP are the sole responsibility of the Owner in accordance with the terms of this Agreement.
- 3. Owner hereby provides the County's designee complete access, of any duration, to the BMPs and their immediate vicinity at any time, upon reasonable notice, or in the event of emergency, as determined by the County Director of Public Works, no advance notice, for the purpose of inspection, sampling, testing of the BMPs, and in case of emergency, to undertake all necessary repairs or other preventative measures at owner's expense as provided in paragraph 5 below. The County shall make every effort at all times to minimize or avoid interference with Owner's use of the Property. Denial of access to any premises or facility that contains WQMP features is a breach of this Agreement and may also be a violation of the County's Pollutant Discharge Elimination System regulations, which on the effective date of this Agreement are found in County Code Sections 35.0101 et seq. If there is reasonable cause to believe that an illicit discharge or breach of this Agreement is occurring on the premises then the authorized enforcement agency may seek issuance of a search warrant from any court of competent jurisdiction in addition to other enforcement actions. Owner recognizes that the County may perform routine and regular inspections, as well as emergency inspections, of the BMPs. Owner or Owner's successors or assigns shall pay County for all costs incurred by County in the inspection, sampling, testing of the BMPs within thirty (30) calendar days of County invoice.
- 4. Owner shall use its best efforts diligently to maintain all BMPs in a manner assuring peak performance at all times. All reasonable precautions shall be exercised by Owner and Owner's representative or contractor in the removal and extraction of any material(s) from the BMPs and the ultimate disposal of the material(s) in a manner consistent with all relevant laws and regulations in effect at the time. As may be requested from time to time by the County, the Owner shall provide the County with documentation identifying the material(s) removed, the quantity, and disposal destination), testing construction or reconstruction.
- 5. In the event Owner, or its successors or assigns, fails to accomplish the necessary maintenance contemplated by this Agreement, within five (5) business days of being given written notice by the County, the County is hereby authorized to cause any maintenance necessary to be done and charge the entire cost and expense against the Property and/or to the Owner or Owner's successors or assigns, including administrative costs, attorneys fees and interest thereon at the maximum rate authorized by the County Code from the date of the notice of expense until paid in full. Owner or Owner's successors or assigns shall pay County within thirty (30) calendar days of County invoice.
- 6. The County may require the owner to post security in form and for a time period satisfactory to the County to guarantee the performance of the obligations stated herein. Should the Owner fail to perform the obligations under the Agreement, the County may, in the case of a cash bond, act for the Owner using the proceeds from it, or in the case of a surety bond, require the surety(ies) to perform the obligations of this Agreement.

- 7. The County agrees, from time to time, within ten (10) business days after request of Owner, to execute and deliver to Owner, or Owner's designee, an estoppel certificate requested by Owner, stating that this Agreement is in full force and effect, and that Owner is not in default hereunder with regard to any maintenance or payment obligations (or specifying in detail the nature of Owner's default). Owner shall pay all costs and expenses incurred by the County in its investigation of whether to issue an estoppel certificate within thirty (30) calendar days after receipt of a County invoice and prior to the County's issuance of such certificate. Where the County cannot issue an estoppel certificate, Owner shall pay the County within thirty (30) calendar days of receipt of a County invoice.
- 8. Owner shall not change any BMPs identified in the WQMP without an amendment to this Agreement approved by authorized representatives of both the County and the Owner.
- 9. County and Owner shall comply with all applicable laws, ordinances, rules, regulations, court orders and government agency orders now or hereinafter in effect in carrying out the terms of this Agreement. If a provision of this Agreement is terminated or held to be invalid, illegal or unenforceable, the validity, legality and enforceability of the remaining provisions shall remain in full effect.
- 10. In addition to any remedy available to County under this Agreement, if Owner violates any term of this Agreement and does not cure the violation within the time already provided in this Agreement, or, if not provided, within thirty (30) calendar days, or within such time authorized by the County if said cure reasonably requires more than the subject time, the County may bring an action at law or in equity in a court of competent jurisdiction to enforce compliance by the Owner with the terms of this Agreement. In such action, the County may recover any damages to which the County may be entitled for the violation, enjoin the violation by temporary or permanent injunction without the necessity of proving actual damages or the inadequacy of otherwise available legal remedies, or obtain other equitable relief, including, but not limited to, the restoration of the Property and/or the BMPs identified in the WQMP to the condition in which it/they existed prior to any such violation or injury.
- 11. This Agreement shall be recorded in the Office of the Recorder of San Bernardino County, California, at the expense of the Owner and shall constitute notice to all successors and assigns of the title to said Property of the obligation herein set forth, and also a lien in such amount as will fully reimburse the County, including interest as herein above set forth, subject to foreclosure in event of default in payment.
- 12. In event of legal action occasioned by any default or action of the Owner, or its successors or assigns, then the Owner and its successors or assigns agree(s) to hold the County harmless and pay all costs incurred by the County in enforcing the terms of this Agreement, including reasonable attorney's fees and costs, and that the same shall become a part of the lien against said Property.
- 13. It is the intent of the parties hereto that burdens and benefits herein undertaken shall constitute covenants that run with said Property and constitute a lien there against.
- 14. The obligations herein undertaken shall be binding upon the heirs, successors, executors, administrators and assigns of the parties hereto. The term "Owner" shall include not only the present Owner, but also its heirs, successors, executors, administrators, and assigns. Owner shall notify any successor to title of all or part of the Property about the existence of this Agreement. Owner shall provide such notice prior to such successor obtaining an

interest in all or part of the Property. Owner shall provide a copy of such notice to the County at the same time such notice is provided to the successor.

- 15. Time is of the essence in the performance of this Agreement.
- 16. Any notice to a party required or called for in this Agreement shall be served in person, or by deposit in the U.S. Mail, first class postage prepaid, to the address set forth below. Notice(s) shall be deemed effective upon receipt, or seventy-two (72) hours after deposit in the U.S. Mail, whichever is earlier. A party may change a notice address only by providing written notice thereof to the other party.
- 17. Owner agrees to indemnify, defend (with counsel reasonably approved by the County) and hold harmless the County and its authorized officers, employees, agents and volunteers from any and all claims, actions, losses, damages, and/or liability arising out of this Agreement from any cause whatsoever, including the acts, errors or omissions of any person and for any costs or expenses incurred by the County on account of any claim except where such indemnification is prohibited by law. This indemnification provision shall apply regardless of the existence or degree of fault of indemnitees. The Owner's indemnification obligation applies to the County's "active" as well as "passive" negligence but does not apply to the County's "sole negligence" or "willful misconduct" within the meaning of Civil Code Section 2782, or to any claims, actions, losses, damages, and/or liabilities, to the extent caused by the acts or omissions of any third party contractors undertaking any work (other than field inspections) or other maintenance on the Property on behalf of the County under this Agreement.

[REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK]

IF TO COUNTY:	IF TO OWNER:
Director of Public Works	
825 E. Third Street, Room 117	
San Bernardino, CA 92415-0835	
IN WITNESS THEREOF, the parties hereto habove.	nave affixed their signatures as of the date first written
OWNER:	
Company/Trust:	FOR: Maintenance Agreement, dated
Signature:	, for the
Name:	project known as
Title:	
Date:	
OWNER:	(APN), As described in the WQMP dated
Company/Trust:	As described in the WQWP dated
Signature:	
Name:	
Title:	
Date:	
	ON FOLLOWING PAGE
A notary acknowledgement is required for recorda	ation.
ACCEPTED BY:	
BRENDON BIGGS, M.S., P.E., Director of Public	Works
Date:	_
Attachment: Notary Acknowledgement	

ATTACHMENT 1 Notary Acknowledgement)

EXHIBIT A (Legal Description)

EXHIBIT B (Map/illustration)

