

STRUCTURAL CALCULATIONS

FOR

412 W Hospitality Lane Upgrades

SAN BERNARDINO, CALIFORNIA

Craig Chamberlain, M.S., S.E.

Structural Engineer S4588 IMEG Corporation IMEG# 23008184.00

> REVIEWED FOR CODE COMPLIANCE June 5, 2024 TRB AND ASSOCIATES

Table of Contents

		Page
1.	Roof Load design criteria	1
2.	RTU & roof curb info.	2~8
3.	(E) Roof framing check	9 ~20
4.	Seismic design criteria	21
5.	Window design criteria	22
6.	RTU anchorage design load (Wind vs Seismic)	23~25
7.	RTU anchorage design (Wind vs Seismic)	26~31
8.	(E) Roof Glu-lam beam strengthening design	32 ~37

PROJECT	DATE	BY	PROJECT NO.
412 W Hospitality Lane Upgrades	2/14/2024	RW	# 23008184.00

Description: Gravity Loads - Roof

Gravity Loads

Classroom and Library Roo	of					
Item	Deck	Joists	Girders	Columns	Seismic	Comments
Roofing	5.0	5.0	5.0	5.0	5.0	min roofing
Plywood	1.5	1.5	1.5	1.5	1.5	1/2" thk plywood
Insulation	1.5	1.5	1.5	1.5	1.5	fiberglass insulation
MEP		1.5	1.5	1.5	1.5	
Ceiling		2.5	2.5	2.5	2.5	Suspended ceiling
Sprinklers		1.5	1.5	1.5	1.5	
		1.8	1.8	1.8	1.8	1/2" acoustic tiles
Joists/trusses			0.9	0.9	0.9	2x8 @ 24" OC
Columns				1.0	1.0	
Interior Partitions	0.0	0.0	0.0	0.0	5.0	
Miscellaneous	0.0	1.2	1.8	1.8	1.8	
Dead Load	8.0	16.5	18.0	19.0	24.0	
Live Load	20.0	20.0	20.0	20.0		reducible

LX Series

Page 2 of 37 Page: 8

PHE4 - 14 SEER Single Pkg. R-410A Heat Pump

Project Name: IMEG Hospitality Phase 1 Reno

Quantity: 1 Tag #: RTU-1

Cooling Performance		,									
Total net capacity	39.2	MBH									
Sensible net capacity	30.9	MBH									
Seasonal Efficiency (at ARI)	14.00	SEER									
Efficiency (at ARI)	11.60	EER									
Ambient DB temp.	105.0	°F									
Entering DB temp.	80.0	°F									
Entering WB temp.	67.0	°F									
Unit Leaving DB temp.	59.6	°F									
Unit Leaving WB temp	58.2	°F									
Leaving air temp dew point	57.30	°F									
Power input	3.61	kW									
Sound power	73	dB(a)									
Refrigerant											
Refrigerant type R-410A											
Sys1	9 b	6 oz									
Heat Pump Performance	e										
Heating output capacity	40.5	MBH									
Ambient DB temp.	47	°F									
Entering DB temp.	60	°F									
Leaving DB temp	86.8	°F									
Air temp, rise	26.8	°F									
Power Input	2,92	kW									
Cop	4.07	COP									
HSPE	8										
Capacity @ $47(°F)$	39.00	MBH									
COP @ 47(°F)	3.60	COP									
Capacity @ 17(°F)	23.00	MBH									
Applied electric heat	7.2	kW									
Heating Performance											
Entering DB temp.	60	۴F									
Heating output capacity (Max)	24.6	MBH									
Applied electric heat	7.2	kW									
Installed	Field										
Supply air	1400	cfm									
Leaving DB temp	76.3	°F									
Air temp. rise	16.3	°F									
Supply Air Blower Performa	ance										
Supply air	1400	cfm									
Ext. static pressure	0.96	IWG									
Blower speed description	High (5)										
Duct location	Bottom										
Motor rating	0.75	HP									
Elevation	0	ft									
Drive type	DIRECT										
Electrical Data											
Power supply 208-1-60	230-1-6	50									
Unit min circuit ampacity 70.3	A 74	.9 A									
Unit max over-current protection 80	<u>A 8</u>	30 A									
Dimensions & Weight	-										
Hgt 47 in Len 52 in	Wth 4	6 in									
Weight with factory installed options	43	b Ib									

Note: Please refer to the tech guide for listed maximum static pressures

 LX® Series Packaged Units are Manufactured at an ISO 9001 Registered Facility and Each Rooftop is Completely Computer-Run Tested Prior To Shipment

YORK

Unit Features

- Unit Cabinet is Constructed of G-90 Galvanized Steel with a Powder Paint Coating at 750 Hour Salt Spray Tested
- · Bottom and Side Electrical and Gas Utility Connections
- Easy Access to All Components
- Single Piece Water-Shed Top Cover and Drip Edge
- Field Convertible Duct Connections From Horizontal to Downflow Allows
 Greater Flexibility
- Full Perimeter, Removable Base Rails with Built in Rigging and Access Provisions
- Non-Corrosive Condensate Pan Internally Sloped to Meet Strict Requirements of ASHRAE 62-89 Indoor Quality Standard
- Single Speed Scroll Compressor
- Compressor is Internally Protected Against High Pressure and Temperature
- Standard Cooling Operation Down to 45 F
- Variable Speed Direct Drive High Static Motor and Slide-out Blower Assembly

Warranty

• Extended 10-Years limited parts and compressor warranty. *Requires registration within 90 days of purchase.

Unit Model #: PHE4B4224 System: PHE4B4224

York® Sun™ Pro 3-12.5 Ton Package

Page 3 of 37

Page: 24

Single Package R-410A Heat Pump

Project Name: IMEG Hospitality Phase 1 Reno

Quantity: 9 Tag #: RTU-2,3,4,7,8,9,,10,15,16

Unit Model #:	XP120C00R2A1AAA3A2
<u> </u>	

System: XP120C00R2A1AAA3A2

cooling Fenomiance	
Total gross capacity	115.3 MBH
Sensible gross capacity	85.2 MBH
Total net capacity	104.9 MBH
Sensible net capacity	74.8 MBH
Efficiency (at ARI)	11.00 EER
Integrated eff. (at ARI)	14.50 IEER
Ambient DB temp.	105.0 °F
Entering DB temp.	80.0 °F
Entering WB temp.	67.0 °F
Evap Coil Leaving DB temp.	60.3 °F
Evap Coil Leaving WB temp.	58.0 °F
Unit Leaving DB temp.	62.7 °F
Unit Leaving WB temp.	58.9 °F
Leaving air temp dew point	56.60
Power input (w/o blower)	10.20 kW
Sound power	83 dB(a)
Refrigerant	
Refrigerant type	R-410A
Svs1	12 lb 14 oz
Svs2	12 lb 12 oz
Uset Dump Derfermenes	12 10 12 02
Heat Pump Performance	
Ambient DB temp.	47 °F
Entering DB temp.	60 °F
Leaving DB temp.	84.4 °F
Air temp. rise	24.4 °F
Design Gross Capacity	105.2 MBH
Design Power Input	6.12 kW
Capacity @ 47(°F)	102.00 MBH
COP @ 47(°F)	3.50 COP
Capacity @ 17(°F)	59.00 MBH
COP @ 17(°F)	2.25 COP
Requires tield-supplied arive	Yes
Applied electric heat	19 1001
Applied electric heat	18 kW
Applied electric heat Heating Performance	18 kW
Applied electric heat Heating Performance Entering DB temp.	18 kW
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max)	18 kW 60 °F 61.4 MBH
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat	18 kW 60 °F 61.4 MBH 24 kW
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat	60 °F 61.4 MBH 24 kW 18.0 kW
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp.	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise	60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performant	60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories)	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor)	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.06 kW
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Electrical Data	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true
Applied electric heat	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 0.57 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true
Applied electric heat	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 °F 14.2 °F 2 °F 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119 7 A
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Elevation Drive type Requires field-supplied drive Unit more over aurent evotation Unit more over aurent evotation	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A 125 A
Applied electric heat	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Applied electric heat Applied electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Electrical Data Power supply 208-3-60 Unit min circuit ampacity 110.1 Unit max over-current protection 125 Dimensions & Weight	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Applied electric heat Applied electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Elevation Drive type Requires field-supplied drive 10.1 Unit min circuit ampacity 110.1 Unit max over-current protection 125 Dimensions & Weight	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1.309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performant Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Elevation Drive type Requires field-supplied drive Dimensions & Weight Unit min circuit ampacity 110.1 Unit max over-current protection 125 Dimensions & Weight Hgt 51 in Len 89 in	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in 1140 lb
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performant Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Elevation Unit min circuit ampacity 110.1 Unit min circuit ampacity 110.1 Unit min circuit ampacity 110.1 Unit max over-current protection 125 Dimensions & Weight Hgt 51 in Len 89 in Weight with factory installed options	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in 1140 lb
Applied electric heat	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 2 nce 4000 cfm 1.43 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in 1140 lb
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Supply air Leaving DB temp. Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power supply 208-3-60 Unit min circuit a	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in 1140 lb
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Elevation Drive type Requires field-supplied drive Unit min circuit ampacity 110.1 Unit max over-current protection 125 Dimensions & Weight Hgt 51 in Len 89 in Weight with factory installed options Clearances Right 12 in Front 36 in	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 14.2 °F 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in 1140 lb ar 12 in 36 in
Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat Applied electric heat Applied electric heat Applied electric heat Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages Supply Air Blower Performan Supply air Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive Veight with factory installed options Unit min circuit ampacity 110.1 Unit max over-current protection 125 Dimensions & Weight Hgt 51 in Len 89 in Weight with factory installed options Clearances Right	18 kW 60 °F 61.4 MBH 24 kW 18.0 kW Field 4000 cfm 74.2 °F 14.2 °F 14.3 IWG 0.57 IWG 1309 rpm 3.45 HP Bottom 3.00 HP 3.28 HP 3.06 kW 0 ft BELT true 230-3-60 A 119.7 A A 125 A Wth 59 in 1140 Ib ar 12 in 36 in static pressures

10 Ton

· York Sun Pro units are manufactured at an ISO 9001 registered facility and each rooftop is completely computer-run tested prior to shipment.

Unit Features

- Two Stage Cooling
- Field Installed Electric Heat
- · Either supply and/or return can be field converted from vertical to horizontal configuration without cutting panels.
- Full perimeter base rails with built in rigging capabilities
- Unit Cabinet Constructed of Powder Painted Steel, Certified At 750 Hours Salt Spray Test (ASTM B-117 Standards)
- Scroll Compressor[s]
- Slide-out Blower/3 HP Belt Drive Motor Assembly
 Unit Ships with 2" Pleated Filters (MERV 13)
- Solid Core Liquid Line Filter Driers
- Replacement Filters: 4 (24" x 20").
- Dual refrigerant circuits for efficient part load operation
- Single Point Power Connection
- Through-the-Curb and Through-the-Base Utility Connections
- Short Circuit Current: 5kA RMS Symmetrical
- Copper tube/aluminum fin condenser coil, Copper tube/aluminum fin ٠ evaporator coil
- Composite Drain Pan Front Connection
- Tool-free maintenance with features like hinged doors for all-access panels, slide-out blower and blower motor tray

BAS Controller

- IntelliSpeed control of the VFD based on stages of cooling. Provides Single Zone VAV Fan Operation as defined by ASHRAE 90.1 section 6.4.3.10.
- Smart Equipment Controller including Discharge Air, Return Air, and Outdoor Air Temperature Sensors.

Standard Unit Controller: Smart Equipment Control Board

Safety Monitoring - Monitors the High and Low-Pressure Switches, the Freezestats, the Gas Valve, if Applicable, and the Temperature Limit Switch on Gas and Electric Heat Units. The Unit Control Board will Alarm on Ignition Failures, Safety Lockouts and Repeated Limit Switch Trips.

Warranty

- One (1) Year Limited Warranty on the Complete Unit
- Five (5) Year Warranty Compressors and Electric Heater Elements

York® Sun™ Pro 3-12.5 Ton Package

Single Package R-410A Heat Pump

Quantity: 4 Tag #: RTU-5,6,11,12

Power supply

Right

Top

Unit min circuit ampacity

Hgt 51 in

12 in

72 in

Unit max over-current protection

Weight with factory installed options

	-	•
Project Name: IMEG Hospitality Phase 1 Reno		Unit Model #: XP090C00R2A1AAA3A2
Quantity: 4 Tag #: RTU-5,6,11,12		System: XP090C00R2A1AAA3A2
Cooling Performance		
Total gross capacity Sensible gross capacity Total net capacity Sensible net capacity Efficiency (at ARI) Integrated eff. (at ARI) Ambient DB temp. Entering DB temp. Evap Coil Leaving DB temp. Evap Coil Leaving WB temp. Unit Leaving WB temp. Unit Leaving WB temp. Leaving air temp dew point Power input (w/o blower) Sound power	92.7 MBH 67.0 MBH 83.8 MBH 11.20 EER 14.60 IEER 105.0 °F 67.0 °F 67.0 °F 59.3 °F 57.2 °F 62.1 °F 58.3 °F 55.90 °F 8.50 kW 83 dB(a)	REAL PROPERTY OF AN AND AND AND AND AND AND AND AND AND
Refrigerant		
Refrigerant type Sys1 Sys2	R-410A 13 lb 13 lb 2 oz	 7.5 ION York Sun Pro units are manufactured at an ISO 9001 registered facility and each rooftop is completely computer-run tested prior to shipment.
Heat Pump Performance		Unit Features
Entering DB temp. Leaving DB temp. Air temp. rise Design Gross Capacity Design Power Input Capacity @ 47(°F) COP @ 47(°F) COP @ 17(°F) COP @ 17(°F) Requires field-supplied drive Applied electric heat Heating Performance Entering DB temp. Heating output capacity (Max) Nominal electric heat	60 °F 84.8 °F 24.8 °F 80.4 MBH 5.3 kW 87.00 MBH 3.50 COP 51.00 MBH 2.25 COP Yes 13.5 kW	 Field Installed Electric Heat Field Installed Electric Heat Either supply and/or return can be field converted from vertical to horizontal configuration without cutting panels. Full perimeter base rails with built in rigging capabilities Unit Cabinet Constructed of Powder Painted Steel, Certified At 750 Hours Salt Spray Test (ASTM B-117 Standards) Scroll Compressor[s] 3 HP High Static Belt Drive Blower Unit Ships with 2" Pleated Filters (MERV 13) Solid Core Liquid Line Filter Driers Replacement Filters: 4 - (24" x 20"). Dual refrigerant circuits for efficient part load operation Single Point Power Connection
Applied electric heat Installed Supply air Leaving DB temp. Air temp. rise Stages	13.5 kW Field 3000 cfm 74.2 °F 14.2 °F 2	 Through-the-Curb and Through-the-Base Utility Connections Short Circuit Current: 5kA RMS Symmetrical Copper tube/aluminum fin condenser coil, Copper tube/aluminum fin evaporator coil Composite Drain Pan - Front Connection Tool for any the particular for two the bin particular for all particular for any two the bin particular
Supply Air Blower Performan		slide-out blower and blower motor trav
Supply all Ext. static pressure Addl. Unit Losses (Options/Accessories) Blower speed Max BHP of Motor (including service factor) Duct location Motor rating Actual required BHP Power input Elevation Drive type Requires field-supplied drive	1.5 IWG 0.33 IWG 1214 rpm 3.45 HP Bottom 3.00 HP 2.79 HP 2.60 kW 0 ft BELT true	 BAS Controller IntelliSpeed control of the VFD based on stages of cooling. Provides Single Zone VAV Fan Operation as defined by ASHRAE 90.1 section 6.4.3.10. Smart Equipment Controller including Discharge Air, Return Air, and Outdoor Air Temperature Sensors. Standard Unit Controller: Smart Equipment Control Board Safety Monitoring - Monitors the High and Low-Pressure Switches, the Freezestats, the Gas Valve, if Applicable, and the Temperature Limit Switch on Gas and Electric Heat Units. The Unit Control Board will Alarm on Ignition Failures, Safety Lockouts and Repeated Limit Switch Trips.

Warranty

230-3-60

97.8 A

100 A

Wth 59 in

1095 lb

12 in

36 in

А

Α

Rear

Left

- One (1) Year Limited Warranty on the Complete Unit
- Five (5) Year Warranty Compressors and Electric Heater Elements

Noto	Diagona rafar ta t	ha taab awida	for listed	mavinuum	atatia propo	iroc
note.	Please relef to t	ne tech guide	ior instea	maximum	static pressu	nes

Electrical Data

Dimensions & Weight

Clearances

Len 89 in

36 in

0 in

208-3-60

90.6

100

Front

Bottom

LX Series

Page 5 of 37 Page: 4

PHE4 - 14 SEER Single Pkg. R-410A Heat Pump

Project Name: IMEG Hospitality Phase 1 Reno

Quantity: 1 Tag #: RTU-13,14

(Cooling Performance		Ì								
	Total net capacity	22.5	MBH								
	Sensible net capacity	17.3	MBH								
	Seasonal Efficiency (at ARI)	14.00	SEER								
	Efficiency (at ARI)	11.60	EER								
	Ambient DB temp.	105.0	°F								
	Entering DB temp.	80.0	°F								
	Entering WB temp.	67.0	°F								
	Unit Leaving DB temp.	60.0	°F								
	Unit Leaving WB temp.	58.2	°F								
	Leaving air temp dew point	57.10	°F								
	Power input	2.13	kW								
ļ	Sound power	70	dB(a)								
	Refrigerant										
Refrigerant type R-410A											
	Sys1	4 lb	9 oz								
ſ	Heat Pump Performance										
ľ	Heating output capacity	24.6	MBH								
	Ambient DB temp.	47	°F								
	Entering DB temp	60	°F								
	Leaving DB temp	88.5	°F								
	Air temp, rise	28.5	°F								
	Power Input	1.89	kW								
	Сор	3.81	COP								
	HSPF	8									
	Capacity @ 47(°F)	23.60	MBH								
	COP @ 47(°F) ` ´	3.70	COP								
	Capacity @ 17(°F)	13.60	MBH								
ļ	Applied electric heat	5.8	kW								
	Heating Performance										
	Entering DB temp.	60	°F								
	Heating output capacity (Max)	19.7	MBH								
	Applied electric heat	5.8	KVV								
	Installed Surphy air	Field	-								
	Supply air	800	°E								
	Air temp, rise	02.0	÷								
ł	Supply Air Blower Porferma	22.0									
ŀ	Supply All Blower Performan	000	ofm								
	Supply all Ext. static pressure	0.0									
	Blower speed description	High (5)	100								
	Duct location	Bottom									
	Motor rating	0.50	HP								
	Elevation	0	ft								
	Drive type	DIRECT									
Ī	Electrical Data										
ľ	Power supply 208-1-60	230-1-6	60								
	Unit min circuit ampacity 53.3	A 5	56 A								
	Unit max over-current protection 60	<u>A 6</u>	50 A								
	Dimensions & Weight										
ſ	Hgt 44 in Len 52 in	Wth 3	6 in								
(Weight with factory installed options	33	ر blo								

Note: Please refer to the tech guide for listed maximum static pressures

2 Ton

 LX® Series Packaged Units are Manufactured at an ISO 9001 Registered Facility and Each Rooftop is Completely Computer-Run Tested Prior To Shipment

Unit Features

- Unit Cabinet is Constructed of G-90 Galvanized Steel with a Powder Paint Coating at 750 Hour Salt Spray Tested
- · Bottom and Side Electrical and Gas Utility Connections
- Easy Access to All Components
- Single Piece Water-Shed Top Cover and Drip Edge
- Field Convertible Duct Connections From Horizontal to Downflow Allows
 Greater Flexibility
- Full Perimeter, Removable Base Rails with Built in Rigging and Access Provisions
- Non-Corrosive Condensate Pan Internally Sloped to Meet Strict Requirements of ASHRAE 62-89 Indoor Quality Standard
- Single Speed Scroll Compressor
- Compressor is Internally Protected Against High Pressure and Temperature
- Standard Cooling Operation Down to 45 F
- Variable Speed Direct Drive High Static Motor and Slide-out Blower Assembly

Warranty

• Extended 10-Years limited parts and compressor warranty. *Requires registration within 90 days of purchase.

York® Sun™ Core 3-12.5 Ton Package

XXE12A2C3AA1A111A3

Unit Model #: XXE12A2C3AA1A111A3

System:

Single Package R-410A Heat Pump

Project Name: IMEG Hospitality Phase 1 Reno

Cooling Performance

Quantity: 1 Tag #: RTU-17

Total gross capacity	121.6	MBH	
Sensible gross capacity	92.7	MBH	
Iotal net capacity	111.4	MBH	
	11 00	FFR	
Integrated eff. (at ARI)	14.60	IEER	
Ambient DB temp.	95.0	°F	
Entering DB temp.	80.0	°F	
Entering WB temp.	67.0	°F	
Evap Coll Leaving DB temp.	58.5	°F	
Linit Leaving DB temp.	57.5 60.9	°F	
Unit Leaving WB temp.	58.2	°F	
Leaving air temp dew point	56,90	°F	
Power input (w/o blower)	8.90	kW	
Sound power	86	dB(a)	
Refrigerant			
Refrigerant type	R-410A		10 Ton
Sys1	12 I b	4 oz	 All units a
Sys2	12 b	4 oz	rooftop is
Heat Pump Performance	ce		Unit Feat
Ambient DB temp.	47	°F	 Two Stage
Entering DB temp.	60	°F	 Unit Cabir
Leaving DB temp.	87	°⊢ °⊏	Salt Spray
Design Gross Canacity	116.6	г MBH	 Either sup
Design Power Input	7.51	kW	configurat
Capacity @ 47(°F)	114.00	MBH	 Full perim
COP @ 47(°F)	3.40	COP	 Scroll Cor
Capacity @ 17(°F)	62.00	MBH	 High Stati
Applied electric heat	2.20	KW V	 Solid Core
Heating Performance	10.0		 Unit Ships
Entering DB temp	60	°۲	 Replacem
Heating output capacity (Max)	63.4	MBH	 Single Poi
Nominal electric heat	24.8	kW	 Short Circ
Applied electric heat	18.6	kW	 Copper tu
Installed	Field		Evaporato
Supply air	4000	°⊑	BAS Con
Air temp, rise	14.7	°F	 Smart Equ
Stages	1		Air Tempe
Supply Air Blower Perform	nance		Standard
Supply air	4000	cfm	 An Integra
Ext. static pressure	1.5	IWG	Fan On ar
Addl. Unit Losses (Options/Accessories)	0.24	IWG	operate in
Blower speed	1045	rpm цр	componer
Duct location	Bottom		 Safety Mo
Motor rating	5.25	HP	freezestat
Actual required BHP	3.20	HP	gas and e
Power input	2.98	kW	failures, s
Elevation		π	 Smart Equ
Electrical Data	DELI		 On-Board
Power supply 208-3-60	230-3-6	0	Warrantv
Unit min circuit ampacity 118.5	A 127	9 A	• One (1) Ye
Unit min over-current protection 125	A 15	0 A	 Five (5) Ye
Unit max over-current protection 125	A 15	0 A	1.100 (0) 1.
Dimensions & Weight	:		
Hgt 49 in Len 87 in	Wth 62	2 in	
Weight with factory installed options	1070	b	
Clearances			
Right 18 in Front 48 in F	Rear 18	3 in	
Top 🚩 72 in Bottom 1 in L	.eft 12	2 in 🦯	
Note: Please refer to the tech guide for listed maxim	um static pressi	ures	

re manufactured at an ISO 9001 registered facility and each completely computer-run tested prior to shipment. ures e Coolina net Constructed of Powder Painted Steel, Certified At 750 Hours Test (ASTM B-117 Standards) ply and/or return can be field converted from vertical to horizontal ion without cutting panels. eter base rails with built in rigging capabilities npressors c Belt Drive Blower e Liquid Line Filter Driers with 2" Throwaway Filters ent Filters: 4 - (20" x 20"). Unit accepts 2" or 4" wide filters. int Power Connection uit Current: 5kA RMS Symmetrical be/Aluminum fin Condenser Coil, Copper tube/Aluminum fin or Coil troller upment Controller including Discharge Air, Return Air, and Outdoor rature Sensors **Unit Controller** ated Low-Ambient Control, Anti-Short Cycle Protection, Lead-Lag, nd Fan off Delays, Low Voltage Protection, Allows all units to the cooling mode down to 0 °F outdoor ambient without additional nts or intervention. nitoring - Monitors the high and low-pressure switches, the s, the gas valve, if applicable, and the temperature limit switch on lectric heat units. The unit control board will alarm on ignition afety lockouts and repeated limit switch trips. upment Control Board

Diagnostic and Fault Code display

- ear Limited Warranty on the Complete Unit
- ear Warranty Compressors

[q				Ļ,	Page 7	of 37	
	ent P/N	MODULATING	PEDCPRDLCDB25MS 208/230V 3Ph Selectable Dry Bul	PEDCPRDLCEN25MS 208/230V 3Ph Enthalpy	PEDCPRDLCDB46MS 460V 3Ph Selectable Dry Bulb	PEDCPRDLCEN46MS 460V 3Ph Enthalpy	economizer / power exhaust optio RD3715, must be added.	ower exhaust sets	PART NUMBER: PEDCPRDLCS SERIES	REV: DRAWN BY: JG
	ProVe	CONSTANT VOLUME	PEDCPRDLCDB25CS 208/230V 3Ph Selectable Dry Bulb	PEDCPRDLCEN25CS 208/230V 3Ph Enthalpy	PEDCPRDLCDB46CS 460V 3Ph Selectable Dry Bulb	PEDCPRDLCEN46CS 460V 3Ph Enthalpy	Note: For factory installed LEED € part number, FLOWECP	5, 16 Bottom of p 2" below	FORM NO:	B/12/2016
	RIFUGAL POWER EXHAUST	OR YORK UNITS	150: ZJ/XP 078-150	.W.G) FLA Hp Wt	0.4	3,800 5.6 2 220 Lbs. cfm 2.8 2 (Includes	-	ir grils rovent power exhaust o equation. 30 3/8" 73/8" 30 3/8" 73/8" 10 2,3,4,7,8,9,10,11 RTU 5,6,11,12 RTU 2,3,4,7,8,9,10,11 'SE' at end will indicat that BACnet can cont modulating power exh modulating power exh	SUBMITED TO: COMPANY:	JUB NAME: EQUIPMENT: NOTES:
	DOWN DISCHARGE CENTR	ECONOMIZER F	ZH/ZF/ZR 102-	VOLTAGE External Static (in.	0.1 0.2 0.3	230V/3Ph 4,200 4,000 3,900 460V/3Ph cfm cfm	PLEASE NOTE:	1. Return air duct, dampers, return a are specific for each unit. 2. For proper electrical wire sizing, P full load amps need to be added it full load amps need to be added it added it full load amps need to be added it full load amps need to be added it added it full load amps need to be added	3847 WABASH DR. MIRA LOMA, CA 91725	PHONE (951) 685-1101 FAX (619) 872-9799
	FEATURES	 Includes fully modulating economizer. (See Form 	ECO-184 for Economizer Specs).	duct mounted CO2 sensor provided as option:	CO2DM - Duct Mount Will LLD	 LEED economizer option. Access for motor, blower, and blower drives. 	 Adjustable motor sheave. 	 Motor with automatic internal thermal protection. Modulating option includes fully programmable factory set) variable frequency drive controlled by a differential pressure transducer designed to continuosly monitor space pressure. LEED ECONOMIZER / POWER EXHAUST OPTIO continuosly monitor space pressure. ProVent P/N: FLOWECPRD3715 ProVent P/N: FLOWECPRD3715 Outside air measurement for dilution utilizing thermal dispersion technology and ASHRAE 62.1 compliant. Provides LEED credit by supplying feedback on ventilition system maintains design requirements. Factory installed onto economizer/power exhaust standard. Provides analog outputs for BMS, visual or audible al and generates an alarm when conditions vary by 10% more of set point. Thermal Dispersion 	" Provent	

Page 8 of 37

PASSED Page 10 of 37

floor Level, RTU-1 Roof: Joist 2 piece(s) 11 7/8" TJI® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member Length : 19' 6 7/8"
Member Reaction (lbs)	1060 @ 3 1/2"	2912 (1.75")	Passed (36%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)	System : Roof Member Type : Joist
Shear (lbs)	1060 @ 3 1/2"	4992	Passed (21%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)	Building Use : Residential Building Code : IBC 2018
Moment (Ft-lbs)	5498 @ 7' 3 5/8"	10112	Passed (54%)	1.60	1.0 D + 0.6 W (All Spans)	Design Methodology : ASD
Live Load Defl. (in)	0.345 @ 9' 6 3/8"	0.979	Passed (L/681)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)	Member Pitch : 0/12
Total Load Defl. (in)	0.685 @ 9' 6 9/16"	1.305	Passed (L/343)	1	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)	

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	B	earing Leng	th	Loads to Supports (lbs))	
Supports	Total	Available	Required	Dead	Roof Liv	e Wind	Factored	Accessories
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	532	195	877	1073	See note 1
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	360	221	392	702	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	19' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10dx1.5	2-Strong-Grip	

Page 10 of 37

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Wind	
Vertical Loads	Location	Spacing	(0.90)	(1.25)	(1.60)	Comments
1 - Uniform (PSF)	0 to 20' 1 7/8"	16"	16.5	-	-	Default Load
2 - Uniform (PSF)	0 to 4' 3 15/16"	16"	-	20.0	-	
3 - Uniform (PSF)	8' 4" to 19' 7 3/16"	16"	-	20.0	-	
4 - Uniform (PLF)	4' 4" to 8' 4"	N/A	112.0	-	317.0	

 ForteWEB Software Operator
 Job Notes

 ray wang imeg (909) 942-5547 raymond.wang@imegcorp.com
 Image: Comparison of Comparison of

SOLUTIONS REPORT

floor Level, RTU-1 Roof: Joist Current Solution: 1 piece(s) 11 7/8" TJI® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Com	bination (Patte	ern)	Member Length : 19' 6 7/8
Member Reaction (lbs)	1060 @ 3 1/2"	1608 (1.75")	Passed (66%)	1.60	1.0 D + 0. Spans)	45 W + 0.75 L	+ 0.75 Lr (All	System : Roof Member Type : Joist
Shear (lbs)	1060 @ 3 1/2"	2648	Passed (40%)	1.60	1.0 D + 0. Spans)	45 W + 0.75 L	+ 0.75 Lr (All	Building Use : Residential Building Code : IBC 2018
Moment (Ft-lbs)	5498 @ 7' 3 5/8"	6072	Passed (91%)	1.60	1.0 D + 0.	6 W (All Spans	;)	Design Methodology : ASD
Live Load Defl. (in)	0.592 @ 9' 6 3/8"	0.979	Passed (L/397)	1	1.0 D + 0. Spans)	45 W + 0.75 L	. + 0.75 Lr (All	Member Pitch : 0/12
Total Load Defl. (in)	1.174 @ 9' 6 9/16"	1.305	Passed (L/200)	1	1.0 D + 0. Spans)	45 W + 0.75 L	+ 0.75 Lr (All	
								_
All Product Solution	S					•		
Depth	Series				Plies	Spacing	Cost Inde	x
16"	TJI® 110				1	24"	0.51 *	
11 7/8"	TJI® 210				1	16"	0.79	

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

4
Weyerhaeuse

floor Level, RTU-17 Roof: Joist 1 piece(s) 11 7/8" TJI® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	834 @ 3 1/2"	1456 (1.75")	Passed (57%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Shear (lbs)	834 @ 3 1/2"	2496	Passed (33%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Moment (Ft-lbs)	4332 @ 9' 2 1/16"	5056	Passed (86%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Live Load Defl. (in)	0.534 @ 9' 9 5/8"	0.979	Passed (L/440)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Total Load Defl. (in)	1.121 @ 9' 9 1/2"	1.306	Passed (L/210)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)

Member Length : 19' 7" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Be	earing Leng	th	Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Wind	Factored	Accessories
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	442	191	580	846	See note 1
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	335	214	300	630	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 8" o/c	
Bottom Edge (Lu)	19' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Wind	
Vertical Loads	Location	Spacing	(0.90)	(1.25)	(1.60)	Comments
1 - Uniform (PSF)	0 to 20' 2"	16"	16.5	-	-	Default Load
2 - Uniform (PSF)	0 to 4' 9"	16"	-	20.0	-	
3 - Point (PLF)	4' 9"	16"	125.0	-	330.0	
4 - Uniform (PSF)	9' 2 1/16" to 19' 7 3/16"	16"	-	20.0	-	
5 - Point (PLF)	9' 2 1/16"	16"	125.0	-	330.0	

 ForteWEB Software Operator
 Job Notes

 ray wang imeg (909) 942-5547 raymond.wang@imegcorp.com
 Image: Comparison of Compar

2/14/2024 8:08:34 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: uio Page 1 / 2

P_w = <u>330 plf</u>

floor Level, Roof: Joist

2 piece(s) 11 7/8" TJI® 110 @ 16" OC

Page 14 of 37

RTU 11

Overall Length: 20' 1 7/8" 0 19' 6 7/8' 1 2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1290 @ 3 1/2"	2912 (1.75")	Passed (44%)	1.60	1.0 D + 0.6 W (All Spans)
Shear (lbs)	1290 @ 3 1/2"	4992	Passed (26%)	1.60	1.0 D + 0.6 W (All Spans)
Moment (Ft-lbs)	9531 @ 9' 10 1/2"	10112	Passed (94%)	1.60	1.0 D + 0.6 W (All Spans)
Live Load Defl. (in)	0.664 @ 10' 1/8"	0.979	Passed (L/354)	-	1.0 D + 0.6 W (All Spans)
Total Load Defl. (in)	1.219 @ 10' 3/16"	1.305	Passed (L/193)		1.0 D + 0.6 W (All Spans)

Member Length : 19' 6 7/8" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Leng	th		Loads to Su	pports (lbs))		
Supports	Total	Available	Required	Dead	Roof Live	Wind	Factored	Accessories	
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	632	179	1108	1297	See note 1	
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	605	170	1037	1227	See note 1	
At hanger supports, the Total Bearing dime	nsion is equa	to the width	of the materi	al that is sur	porting the h	anger			

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 6" o/c	
Bottom Edge (Lu)	19' 7" o/c	
•TIL joists are only analyzed using	Maximum Allowable bracing solutions	

[JI joists are only analyzed using Ma

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories						
1 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10dx1.5	2-Strong-Grip							
2 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10dx1.5	2-Strong-Grip							

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Wind	
Vertical Loads	Location	Spacing	(0.90)	(1.25)	(1.60)	Comments
1 - Uniform (PSF)	0 to 20' 1 7/8"	16"	16.5	-	-	Default Load
2 - Uniform (PSF)	0 to 6' 6"	16"	-	20.0	-	
3 - Uniform (PSF)	13' to 19' 7 3/16"	16"	-	20.0	-	
4 - Uniform (PLF)	6' 6" to 13'	N/A	122.0	-	330.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes rav wang imeg (909) 942-5547 raymond.wang@imegcorp.com Page 14 of 37

D Only														0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.672	0.157	0.90	1.00	1.00	1.00	1.100	1.00	1.00	1.15	4.71	765.1	1,138.5	0.67	25.5	162.0
+D+Lr					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.543	0.139	1.25	1.00	1.00	1.00	1.100	1.00	1.00	1.15	5.28	858.1	1,581.3	0.82	31.2	225.0
+D+0.750Lr					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.528	0.132	1.25	1.00	1.00	1.00	1.100	1.00	1.00	1.15	5.14	834.8	1,581.3	0.78	29.8	225.0
+D+0.60W					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.800	0.174	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	9.97	1,620.1	2,024.0	1.32	50.1	288.0

Wood Beam

LIC# : KW-06015149, Build:20.23.08.01

IMEG CORP

Project File: tube steel_backup_1.ec6 (c) ENERCALC INC 1983-2023

DESCRIPTION: (N) 4x12

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Mome	nt Values		SI	hear Vali	ues
Segment Length	Span #	М	V	CD	СМ	c _t (CLx	C _F	Cfu	с _і	с _г	М	fb	F'b	V	fv	F'v
+D-0.60W					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.044	0.020	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	0.55	89.9	2,024.0	0.15	5.6	288.0
+D+0.750Lr+0.450W	V				1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.729	0.168	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	9.08	1,476.1	2,024.0	1.27	48.2	288.0
+D+0.750Lr-0.450W	1				1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.096	0.039	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	1.19	193.6	2,024.0	0.30	11.3	288.0
+D+0.450W					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.695	0.153	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	8.65	1,406.4	2,024.0	1.15	44.0	288.0
+D-0.450W					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.061	0.024	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	0.76	123.9	2,024.0	0.19	7.1	288.0
+0.60D+0.60W					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.649	0.139	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	8.08	1,314.1	2,024.0	1.05	39.9	288.0
+0.60D-0.60W					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.196	0.046	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	2.44	396.0	2,024.0	0.35	13.2	288.0
+0.60D					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 19.60 ft	1	0.227	0.053	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	2.82	459.1	2,024.0	0.40	15.3	288.0

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defi Location	on in Span	Load Combination	Max. "+" Defl L	ocation in Span
+D+0.60W	1	0.9070	9.800		0.0000	0.000
Vertical Reactions			Suppor	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 St	upport 2			
Max Upward from all Load	Conditions	1.344	1.334			
Max Upward from Load Co	mbinations	1.344	1.334			
Max Upward from Load Ca	ses	1.078	1.067			
D Only		0.698	0.694			
+D+Lr		0.872	0.869			
+D+0.750Lr		0.828	0.825			
+D+0.60W		1.344	1.334			
+D+0.750Lr+0.450W		1.313	1.305			
+D+0.450W		1.183	1.174			
+0.60D+0.60W		1.065	1.056			
+0.60D		0.419	0.416			
Lr Only		0.174	0.175			
W Only		1.078	1.067			

(E) TJI JOIST @ RTU 15 ~16

MEMBER REPORT

floor Level, Roof: Joist

1 piece(s) 11 7/8" TJI® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	502 @ 3 1/2"	1138 (1.75")	Passed (44%)	1.25	1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	502 @ 3 1/2"	1950	Passed (26%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	2587 @ 10' 7 1/4"	3950	Passed (66%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.374 @ 10' 4 11/16"	0.979	Passed (L/628)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Total Load Defl. (in)	0.790 @ 10' 4 13/16"	1.306	Passed (L/298)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)

Member Length : 19' 7" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Be	earing Leng	th		Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Wind	Factored	Accessories
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	263	253	110	516	See note 1
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	347	147	330	606	See note 1
• At hanger supports, the Total Bearing dime	ncion is oqua	to the width	of the materi	al that is sup	porting the h	ngor		

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hang

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 4" o/c	
Bottom Edge (Lu)	19' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Wind	
Vertical Loads	Location	Spacing	(0.90)	(1.25)	(1.60)	Comments
1 - Uniform (PSF)	0 to 20' 2"	16"	16.5	-	-	Default Load
2 - Uniform (PSF)	0 to 15'	16"	-	20.0	-	
3 - Point (PLF)	15'	16"	125.0	-	330.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
ray wang imeg (909) 942-5547		Δ
raymond.wang@imegcorp.com		Page 17 of 37

2/14/2024 7:25:57 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: uio Page 1 / 1

floor Level, RTU-7 Roof: Joist 2 piece(s) 11 7/8" TJI® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	1796 @ 19' 10 1/2"	2912 (1.75")	Passed (62%)	1.60	1.0 D + 0.6 W (All Spans)	
Shear (lbs)	1796 @ 19' 10 1/2"	4992	Passed (36%)	1.60	1.0 D + 0.6 W (All Spans)	
Moment (Ft-lbs)	8238 @ 12' 8 9/16"	10112	Passed (81%)	1.60	1.0 D + 0.6 W (All Spans)	
Live Load Defl. (in)	0.532 @ 11'	0.979	Passed (L/442)	-	1.0 D + 0.6 W (All Spans)	
Total Load Defl. (in)	1.022 @ 11'	1.306	Passed (L/230)	-	1.0 D + 0.6 W (All Spans)	

Member Length : 19' 7" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su	pports (lbs))	
Supports	Total	Available	Required	Dead	Roof Live	Wind	Factored	Accessories
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	467	219	630	915	See note 1
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	844	126	1598	1802	See note 1
At hanger supports, the Total Bearing dime	nsion is equa	to the width	of the materi	al that is su	porting the h	anger		

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 9" o/c	
Bottom Edge (Lu)	19' 7" o/c	
TIL joints are only analyzed using	Maximum Allowable bracing solutions	

[JI joists are only analyzed using Ma

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories						
1 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10dx1.5	2-Strong-Grip							
2 - Face Mount Hanger	U410	2.00"	N/A	14-10dx1.5	6-10d	Web Stiffeners						

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Wind	
Vertical Loads	Location	Spacing	(0.90)	(1.25)	(1.60)	Comments
1 - Uniform (PSF)	0 to 20' 2"	16"	16.5	-	-	Default Load
2 - Uniform (PSF)	0 to 11'	16"	-	20.0	-	
3 - Uniform (PLF)	11' to 17' 8 1/16"	N/A	130.0	-	334.0	
4 - Uniform (PSF)	17' 8 1/16" to 19' 7 3/16"	16"	-	20.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes		
ray wang imeg (909) 942-5547		4	
raymond.wang@imegcorp.com		Page 19 of 37	aeuser

floor Level, RTU-14 Roof: Joist 1 piece(s) 11 7/8" TJI® 110 @ 16" OC

PASSED Page 20 of 37

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	938 @ 19' 10 1/2"	1456 (1.75")	Passed (64%)	1.60	1.0 D + 0.6 W (All Spans)
Shear (lbs)	938 @ 19' 10 1/2"	2496	Passed (38%)	1.60	1.0 D + 0.6 W (All Spans)
Moment (Ft-lbs)	4242 @ 13' 5 7/8"	5056	Passed (84%)	1.60	1.0 D + 0.6 W (All Spans)
Live Load Defl. (in)	0.614 @ 10' 8 1/8"	0.979	Passed (L/382)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Total Load Defl. (in)	1.107 @ 10' 7 3/16"	1.306	Passed (L/212)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)

Member Length : 19' 7" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (
Supports	Total	Available	Required	Dead		Roof Live	Wind	F	actored	Accessories
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	291		241	312		612	See note 1
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	417		175	880		945	See note 1
At her sey average the Tatel Desvice dime.	nalam la anua	ماطام تبيير مماط مط	of the grant and	يريم مناط وماط ام		ممار مماط بم منظري				

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hange

• 1 See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 8" o/c	
Bottom Edge (Lu)	19' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip	

Page 20 of 37

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Job Notes

			Dead	Roof Live	Wind	
Vertical Loads	Location	Spacing	(0.90)	(1.25)	(1.60)	Comments
1 - Uniform (PSF)	0 to 20' 2"	16"	16.5	-	-	Default Load
2 - Uniform (PSF)	0 to 12' 9"	16"	-	20.0	-	
3 - Uniform (PLF)	12' 9" to 16' 9"	N/A	66.0	-	298.0	
4 - Uniform (PSF)	16' 9" to 19' 7 3/16"	16"	-	20.0	-	

ForteWEB Software Operator ray wang imeg (909) 942-5547 raymond.wang@imegcorp.com

A This is a beta release of the new ATC Hazards by Location website, Please contact us with feedback,

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

USA

ATC Hazards by Location

Search Information

Address:	412 W Hospitality Ln, San Bernardino, CA 92415
Coordinates:	34.0662486, -117.2926468
Elevation:	982 ft
Timestamp:	2023-12-14T01:56:09.024Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	IV
Site Class:	D

nta Cla	arita	5	7~			
	Angel National I	es orest	982 ft			
Lo	os Angeles	San Bernar	dino Ber	San		
anta Mo	onica 📅 Ana	Riversio	deo Natio	hal Forest Palm Sptir	igs Jos	hu
Long	Beacho Huntington	Irvine 0		Palm Dese	nto Indio	OF
000	Beach			Map data ©	2023 Goog l e, INE	GI
						•
		X				

Basic Parameters

	Name	Value	Description
	SS	2,446	MCE _R ground motion (period=0.2s)
	S ₁	0.981	MCE _R ground motion (period=1.0s)
	S _{MS}	2.446	Site-modified spectral acceleration value
	S _{M1}	* null	Site-modified spectral acceleration value
•	S _{DS}	1.631	Numeric seismic design value at 0.2s SA
	S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_v	* null	Site amplification factor at 1.0s
CRS	0.914	Coefficient of risk (0.2s)
CR ₁	0.89	Coefficient of risk (1.0s)
PGA	1.03	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	1.133	Site modified peak ground acceleration
ΤL	8	Long-period transition period (s)
SsRT	2.475	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.708	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.446	Factored deterministic acceleration value (0.2s)
S1RT	0.993	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.115	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.981	Factored deterministic acceleration value (1.0s)
PGAd	1.03	Factored deterministic acceleration value (PGA)
* See Secti	on 11.4.8	

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

A This is a beta release of the new ATC Hazards by Location website, Please contact us with feedback,

The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

ASCE 7-16

Address:	412 W Hospitality Ln, San Bernardino, CA 92415, USA
Coordinates:	34.0662486, -117.2926468
Elevation:	982 ft
Timestamp:	2023-12-14T01:54:50.420Z
Hazard Type:	Wind

MRI 10-Year	67 ı	mph
MRI 25-Year	72	nph
MRI 50-Year	77 1	nph
MRI 100-Year	82 1	nph
Risk Category I	90 ı	mph
Risk Category II	96 i	nph
Risk Category III	102	nph
Risk Category IV	107 ı	nph

MRI 10-Year	A Special Region mph	ASCE 7-05 Wind Spee
You are in a special wind Authority Having Jurisdic	region, Please contact the tion.	You are in a special wi Authority Having Juris
MRI 25-Year	A Special Region mph	
You are in a special wind Authority Having Jurisdic	region. Please contact the tion.	
MRI 50-Year	A Special Region mph	
You are in a special wind Authority Having Jurisdic	region. Please contact the tion.	
MRI 100-Year	A Special Region mph	
You are in a special wind Authority Having Juri <mark>sdic</mark>	region, Please contact the tion,	
Risk Category I	A Special Region mph	
You are in a special wind Authority Having Jurisdic	region, Please contact the tion.	
Risk Category II	A Special Region mph	

wind region. Please contact the Authority F ing Jurisdiction.

ASCE 7-10

🛕 Special Region mph You are in a special wind region, Please contact the

Authority Having Jurisdiction.

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals, ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

PROJEC	Т			DATE		BY		PROJECT NO.	
412 W	Hospitality L	ane Upgr	ades	3/28/2024	ļ	RW		# 23008184.00	
Te	1 Insion Demand, 1 Shear Demand, V	Bolts at e : 432 LB /: 63 LB	each Loca	tion	436	lb/bolt	.= [T ² +V ²] ^C	.5	
<u>C</u> .	alculation of Lag	Screw Capa	city per NI	<u>DS 2015</u>					
Δ	Specific Lag D La Side Member TI	: Gravity, G: iameter, D: g Length, L: hickness, t _s : ment Factor	0.5 1/4" 3" 1/4"	0. 25 3 0.25	in. in. in.	e		\mathcal{O}	
<u>A</u>				<u></u>					
Ŵ	/ind/Earthquake	Load	Table 2.2	Typical De	esign Load	Duration	Factor C		
	≤19% ≤19%	1.0	In-Servi Fabricatio	ce Moistur on Moistur	re Content re Content	Duration			
		1.0	[Table 10.	.3.3]	W Wet Se	ervice Fact	or, C _M		
		1.0	[Table 10.	.3.3]	V Wet Sei	rvice Facto	r, C _M		
	T≤	100°F	ITable 10	Service Te	emperature				
		1.0		.3.4] Sheet]	Croup Ag	ture Factor	, C _t		
	Pern	1.0 endicular to	[See Add	Isneetj	Group Ac	of Loading	r, C _g		
		1 in. O.C	Table 11.	.5.1B]	Min Spaci	ng for $C\Delta$ =	1.0		
	0.7	5 in. O.C	Table 11.	.5.1B]	Min Spaci	ng			
		6 in. O.C			Actual Pro	ovided Spa	cing		
	0	1 in. 5 in	[Table 11.	.5.1A] 5 1A]	Min End D	Distance fo	r C∆=1.0 r C∆=0.5		
	0.	2 in.		.J.IAJ	Actual Pro	ovided End	Distance		
		1.0	[11.5.1]	Geometry	Factor, C	Δ			
	No		Lag into e	end grain?					
		1.0	[11.5.2]	W End Gr	ain Factor,	, C _{eg}			
		1.0	[11.5.2]	Z End Gra	in Factor,	C _{eg}			
	No	Тс	pe-Nailed?				_		
		1.0	[11.5.4]		W loe-Na	all Factor, (-tn		
		1.0	[11.5.4]		Z Toe-Nai	l Factor, C	n		
C	apacity Calculatio	<u>on with Adjı</u>	ustment Fa	actors					
	W: 22	5 lb/in. of t	hread pen	etration [Table 11.2	A]			
	L _{T-E} : 1.8437	5 in. of thre	ad penetr	ation [Tab	le L2]				
	Z _{II} : 21	0 [Table 11	K]						
	Ζ _γ : 15	0 [Table 11	К]						

2 W Hospitality Lane Upgrades3/28/202RW# 2308184.00W'p:644 lb = W Lrts Co Cm C, Cm	PROJECT		DATE	BY	PROJECT NO.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	412 W Hospita	ality Lane Upgrades	3/28/2024	RW	# 23008184.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W'p:	664 lb = W L _{T-E} C _D C _M ($C_t C_{eg} C_{tn}$		
$\begin{aligned} f': \text{for } f_{n} \in \mathcal{F}_{n} \subset \mathcal{F}_{n$	Ζ _{II} ':	336 lb = $Z_{II} C_D C_M C_t C_g$	$_{\rm g} C_{\Delta} C_{\rm eg} C_{\rm tn}$		
Descention of the section of the s	Ζ _Υ ':	240 lb = $Z_{\gamma} C_D C_M C_t C_g$	$_{\rm g} {\rm C}_{\Delta} {\rm C}_{\rm eg} {\rm C}_{\rm tn}$		
Penetration, p: 2.75 in. $p > 8D \Rightarrow 2 need not be reduced per Table 11X.W'p:664 lbZ'i:336 lbZ'i:336 lbZ'i:240 lbCheck Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1]Za':240 lbCheck Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1]Za':240 lbCheck Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1]Za':240 lbCheck Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1]Za':240 lb/boltCa':1.425 rad = tan-1(T/V)OkayCheck Of DistortG40 lb/boltA 36 lb/boltCheck Screw Capacity with constance640 lb/boltA 36 lb/boltCheck Screw Capacity with constanceG 10 lb/boltA 36 lb/boltCheck Screw Capacity with constance640 lb/boltA 36 lb/boltCa:1.425 rad = tan-1(T/V)OkayDesign SummaryI. 1.425 rad = tan-1(T/V)OkayDesign SummaryI. 1.44"OkayOkayOkayOkayDesign is Adequate2$	Decign Para	motorc			
Performance. 2.75 in. $p > D \Rightarrow Z$ need not be reduced per Table 11K W'p: 664 lb Z ₁ ': 336 lb Z ₇ ': 240 lb Check Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1] Za' = Zll'(W' p) / (Zl'sinZa + W'p cosZa)= 650 lb/bolt > 436 lb/bolt α : 1.425 rad = tan ⁻¹ (T/V) Qkay Z'' = ZY'(W' p) / (Zr'sinZa + W'p cosZa)= 640 lb/bolt > 436 lb/bolt α : 1.425 rad = tan ⁻¹ (T/V) Qkay Design is Adequate Design is Adequate 2. in. [Table 11.5.1A]End Distance 6. in. O.C. [Table 11.5.1B]Spacing 1. in. [Table 11.5.1C]Edge Distance	Design Para Popotration	<u>ameters</u>			
	renetration	,μ. 275 in a>80 =>	7 need not he reduced	ner Tahle 11K	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	W'n:	664 lb		per ruble lik	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Z";	336 lb			
$\begin{aligned} \begin{array}{c} \textbf{Let u } \\ \textbf{Check Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1]} \\ \textbf{Za' = Zl!'(W' p) / (Zl!'sin2a + W'p cos2a) = \\ & \textbf{650 lb/bolt} & \textbf{366 lb/bolt} \\ \textbf{a:} & 1.425 rad = tan^{-1}(T/V) \\ \hline \textbf{Okay} \\ \textbf{Cr' = Zr'(W' p) / (Zr'sin2a + W'p cos2a) = \\ & \textbf{640 lb/bolt} & \textbf{366 lb/bolt} \\ \textbf{a:} & 1.425 rad = tan^{-1}(T/V) \\ \hline \textbf{Okay} \\ \hline \textbf{Design is Adequate} \\ \hline \textbf{Design is Adequate} \\ \hline \textbf{Design is Adequate} \\ \hline \textbf{2} & \text{in. [Table 11.5.1A]} & \dots End Distance \\ & \textbf{6} & \text{in. O.C. [Table 11.5.1B]} & \dots Spacing \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{1} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{2} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{3} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{4} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{4} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{4} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{4} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distance \\ \hline \textbf{5} & \text{in. [Table 11.5.1C]} & \dots Edge Distan$	- ₁₁ : 7':	240 lb			
Check Screw Capacity with Combined Lateral and Withdrawal Loads [11.4.1] $Za' = ZII'(W' p) / (ZII'sin2a + W'p cos2a) =$ 650 lb/bolt > 436 lb/bolt $a: 1.425 rad = tan^{-1}(T/V)$ Okay $ZY' = ZY'(W' p) / (ZY'sin2a + W'p cos2a) =$ 640 lb/bolt > 436 lb/bolt $a: 1.425 rad = tan^{-1}(T/V)$ Okay $a: 1.425 rad = tan^{-1}(T/V)$ Okay $Design is Adequate$ Design is AdequateLag Design SummaryD: $1/4^{4'}$ ϕ L: $3^{*'}$ t, 1/4"Design is Adequate22in. [Table 11.5.1A]End Distance6in. O.C. [Table 11.5.1B]Spacing1in. [Table 11.5.1C]Edge Distance	- Y ·				
$\begin{aligned} z\alpha' &= 2II'(W' p) / (ZII'sin2\alpha + W' p cos2\alpha) = 650 lb/bolt > 436 lb/bolt \\ \alpha : 1.425 rad = tan-1(T/V) Okay \\ ZY' &= ZY'(W' p) / (ZY'sin2\alpha + W' p cos2\alpha) = 640 lb/bolt > 436 lb/bolt \\ \alpha : 1.425 rad = tan-1(T/V) Okay \\ \hline Design is Adequate \\ \hline Design is Adequate \\ \hline Lag Design Summary \\ b: 1/4^{n} \phi \\ b: 3^{n} \\ t; 1/4^{n} \\ \hline Design is Adequate \\ 2 in. [Table 11.5.1A]End Distance \\ 6 in. O.C. [Table 11.5.1B]Spacing \\ 1 in. [Table 11.5.1C]Edge Distance \\ \end{aligned}$	Check Screv	v Capacity with Combined	Lateral and With	drawal Loads [11.4	<u>l.1]</u>
650 lb/bolt>436 lb/bolt α :1.425 rad = tan ⁻¹ (T/V)Okay $ZY' = ZY'(W' p) / (ZY'sin2\alpha + W' p cos2\alpha) = 640 lb/bolt>436 lb/bolt\alpha:1.425 rad = tan-1(T/V)OkayDesign is AdequateDesign SummaryD:1/4" \phiL:3"t;1/4"Design is Adequate2in. [Table 11.5.1A]End Distance6in. O.C. [Table 11.5.1B]Spacing1in. [Table 11.5.1C]Edge Distance$	$Z\alpha' = ZII'(W')$	p) / (ZII'sin 2α + W'p cos 2α	α) =		
$a: 1.425 \text{ rad} = \tan^{-1}(T/V)$ $Okay$ $ZY' = ZY'(W' p) / (ZY'sin2\alpha + W' p cos2\alpha) = 640 \text{ lb/bolt} > 436 \text{ lb/bolt}$ $a: 1.425 \text{ rad} = \tan^{-1}(T/V)$ $Dkay$ $Design is Adequate$ $Lag Design Summary$ $D: 1/4" \phi$ $L: 3"$ $t_s: 1/4"$ $Design is Adequate$ $2 \text{ in. [Table 11.5.1A]} \dots End Distance$ $6 \text{ in. O.C. [Table 11.5.1B]} \dots Spacing$ $1 \text{ in. [Table 11.5.1C]} \dots Edge Distance$		650 lb/bolt	>	436 lb/bolt	
$\frac{Okay}{CY' = ZY'(W' p) / (ZY'sin2\alpha + W' p cos2\alpha) = 640 lb/bolt > 436 lb/bolt}$ $\alpha : 1.425 rad = tan^{-1}(T/V)$ $\frac{Okay}{Design is Adequate}$ $\frac{Lag Design Summary}{Design is Adequate}$ $\frac{1}{2} \cdot 1/4'' = \frac{1}{2}$ $\frac{2}{1} \cdot in [Table 11.5.1A] \dots End Distance$ $\frac{6}{1} \cdot in O.C. [Table 11.5.1B] \dots Spacing$ $\frac{1}{1} \cdot in [Table 11.5.1C] \dots Edge Distance$	α:	1.425 rad = tan ⁻¹ (T/V)			
$ZY' = ZY'(W' p) / (ZY'sin2\alpha + W'p cos2\alpha) = 640 lb/bolt > 436 lb/bolt \alpha: 1.425 rad = tan-1(T/V) Okav Design is Adequate Lag Design Summary D: 1/4" \phiL: 3"t; 1/4"Design is Adequate2 in. [Table 11.5.1A]End Distance6 in. O.C. [Table 11.5.1B]Spacing1 in. [Table 11.5.1C]Edge Distance$			<u>Okay</u>		
a: 1.425 rad = tan ⁻¹ (T/V) <u>Okav</u> <u>Design is Adequate</u> <u>Lag Design Summary</u> D: 1/4" φ L: 3" t; 1/4" <u>Design is Adequate</u> 2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance	ΖΥ' = ΖΥ'(W'	p) / ($Z\Upsilon$ 'sin2 α + W'p cos2 α))=		
 a: 1.425 rad = tan⁻¹(T/Y) Okay Design is Adequate 1/4" φ L: 3" t; 1/4" Design is Adequate 2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance 		640 lb/bolt	>	436 lb/bolt	
Ukay Design is Adequate Design is Adequate 1 in. [Table 11.5.1A] End Distance 6 in. O.C. [Table 11.5.1B] End Distance 1 in. [Table 11.5.1C] End Distance 1 in. [Table 11.5.1C]	α:	1.425 rad = tan ⁻ (T/V)			
Design is Adequate D: 1/4" L: 3" t_s: 1/4" Design is Adequate 2 in. [Table 11.5.1A] End Distance 6 in. O.C. [Table 11.5.1B] Spacing 1 in. [Table 11.5.1C] Edge Distance			Okay		
Lag Design Summary D: 1/4" d: 3" t; 1/4" Design is Adequate 2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance			Design is Ad	lequate	
Lag Design Summary D: 1/4" L: 3" ts: 1/4" Design is Adequate 2 in. [Table 11.5.1A] End Distance 6 in. O.C. [Table 11.5.1B] Spacing 1 in. [Table 11.5.1C] Edge Distance					
D: 1/4" ϕ L: 3" t _s : 1/4" <u>Design is Adequate</u> 2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance	Lag Design S	<u>Summary</u>			
L: 3" t _s : 1/4" <u>Design is Adequate</u> 2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance	D:	1/4" ф			
t _s : 1/4" <u>Design is Adequate</u> 2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance	L:	3"			
2 in. [Table 11.5.1A] End Distance 6 in. O.C. [Table 11.5.1B] Spacing 1 in. [Table 11.5.1C] Edge Distance	t _s :	1/4"			
2 in. [Table 11.5.1A]End Distance 6 in. O.C. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance	D	esign is Adequate			
6 in. O.C. [Table 11.5.1A]End Distance 1 in. [Table 11.5.1B]Spacing 1 in. [Table 11.5.1C]Edge Distance) in [Table 11 5 14	1 F -	Distance	
1 in. [Table 11.5.1C]Edge Distance		2 IN. [Table 11.5.1A	ןEN 18 כהי		
		1 in [Table 11.5.10	.3.16]3þá	ze Distance	
]		

PROJECT			DATE		BY		PROJECT NO.	
<mark>412 W Hosp</mark>	itality Lane	Upgrades	3/28/2024		RW		# 23008184.00	
Tension D Shear D	1 Bo Demand, T: 4 emand, V: 1	olts at each Loca 63 LB 07 LB	ition	475	lb/bolt .= [[[] T ² +V ²] ⁰	.5	
<u>Calculatio</u>	on of Lag Screy	w Capacity per NI	<u>DS 2015</u>					
Side M	Specific Gra Lag Diame Lag Ler 1ember Thickr	vity, G: 0.5 eter, D: 1/4" ngth, L: 3" ness, t _s : 1/4"	0.25 i 3 ii 0.25 ii	n. n. n.	e		\mathcal{O}	
<u>Applicable</u>			<u></u>					
Wind/Ear	thquake Load	1.C Table 2.2	Typical Des	ign Load	Durati			
	≤19% ≤19%	In-Servi Fabricatio	s.2] ce Moisture on Moisture	Content Content	Duration Fac	tor, C _D		
		1.0 [Table 10	.3.3] V	W Wet Se	rvice Factor, (С _м		
	T < 100	1.0 [Table 10	.3.3] V	/ Wet Ser	vice Factor, C	м		
	1 2 100	F 1.0 [Table 10	3.41 T	inperature Temnerat	ure Factor, C.			
		1.0 [See Add'	'I Sheet]	Group Act	tion Factor, C.			
	Perpendi	cular to Grain		Direction	of Loading	5		
	1 in.	O.C [Table 11	.5.1B] N	Min Spaci	ng for $C\Delta=1.0$			
	0.75 in.	O.C [Table 11	.5.1B] N	Vin Spaci	ng			
	6 m.	U.C [Table 11	5 1 A I N	Actual Pro Min End D	vided Spacing	5 \=1 ∩		
	0.5 in.	[Table 11	.5.1A] N	viin End D Vin End D	istance for CL	1=1.0 1=0.5		
	2 in.	-	Δ	Actual Pro	ovided End Dis	tance		
		1.0 [11.5.1]	Geometry I	Factor, C	7			
	No	Lag into e	end grain?		-			
		1.0 [11.5.2]	W End Grai	In Factor,	C _{eg}			
	No	I.U [II.5.2] Toe-Nailed?	Z End Grain	i Factor, o	L _{eg}			
	NO	1.0 [11.5.4]	v	N Toe-Na	il Factor, C _{tn}			
		1.0 [11.5.4]	Z	Toe-Nail	l Factor, C _{tn}			
<u>Capacity</u>	Calculation wi	ith Adjustment Fa	actors					
W	225 lb/	in. of thread pen	etration [Ta	ble 11.2/	A]			
▼ L _{T-E} : _	1.84375 in.	of thread penetr	ation [Table	e L2]				
Z ₁₁ :	210 [Ta	able 11Kj						
Z _Y :	: 150 [Ta	adie IIKj						

PROJECT		DATE	BY	PROJECT NO.
412 W Hospita	lity Lane Upgrades	3/28/2024	RW	# 23008184.00
W'p:	664 lb = W L _{T-E} C _D C _M C	C _t C _{eg} C _{tn}		
Z ₁₁ ':	336 lb = $Z_{II} C_D C_M C_t C_g$	$C_{\Delta} C_{eg} C_{tn}$		
Ζ _Υ ':	240 lb = $Z_{\gamma} C_D C_M C_t C_g$	$C_{\Delta} C_{eg} C_{tn}$		
<u>Design Para</u>	<u>meters</u>			
Penetration,	, ρ : 2.75 in ρ	7 mood not be reduced	nor Table 11K	
W'n·	664 lh	l need not be reduced	per ruble 11k	
νν p. 7.'·	336 lb			
∠∥ · 7 '·	240 lb			
Δ Υ .	240 15			
<u>Check Screw</u>	v Capacity with Combined	Lateral and With	drawal Loads [11.4	<u>4.1]</u>
$Z\alpha' = ZII'(W')$	p) / (ZII'sin2α + W'p cos2α)=		
	632 lb/bolt	>	475 lb/bolt	
α:	1.343 rad = tan ⁻¹ (T/V)			
		<u>Okay</u>		
ΖΥ' = ΖΥ'(W'	p) / (ZY'sin2 α + W'p cos2 α)	=		
		>	475 ID/DOIT	
α:	1.343 rad = tan (1/V)	Okay		
		Design is Ac	<u>lequate</u>	
Lag Design S	Summary			
D:	1/4" φ			
L:	3" 1 / 41			
τ _s : •	1/4"			
	esign is Adequate			
	2 in [Table 11 5 1A]	l En	Distance	
	6 in. O.C. [Table 11.]	5.1B]Spa		
	1 in. [Table 11.5.1C]	Edg	ge Distance	

PROJECT	DATE	BY	PROJECT NO.
CastleView ES HVAC Replacement	09/18/2023	RW	21006767.00
(E) 5 1/8 x27 GLB @ Grid line 4			reef live load reduction
	\mathcal{W}_{DL} = 18	3.0 psf	$A_t = 20' * 45' / 2 = 450 \text{ ft}^2$
P ₂ 20.6'	$\mathcal{W}_{\scriptscriptstyle RLL}$ =	15.0 psf	$R_t = 1.2 - 0.001A_t = 0.75$
P_1			20psf * 0.75 = <u>15 psf</u>
19.2' W		AC unit:	RTU-16 UNIT WT=1,350 LBS CUBB WT=387 LBS
	<u> </u>	1350+ 38	37 = 1.737 lbs
L = 44.5'		1,737 lbs	s *18'/20' = 1,563 lbs
RTU-17			Distribute to GLB
UNIT WT=1,320 LBS CURB WT=405 LBS 1320+ 405 = 1,725 lbs			$P_1 = 1,563 \text{ lbs}$
1,725 lbs *7'/20	' = 604 lbs	, i i i i i i i i i i i i i i i i i i i	
	Distribut	te to GLB beam	$P_2 = 604 \text{ lbs}$
See no	ext page for desi	an	
	At page for desi	<u>ign</u>	
(E) 5 1/8 x27 GLB @ Grid line 10			
\mathbf{P}_{1}		$\mathcal{W}_{\rm DL} = 18.0$) psf
22.25' W		VV _{RLL} – IC	л.о ры
		AC unit:	RTU-5
L = 44.5'			CURB WT=387 LBS
		1300+ 387 =	1 687 lbs
		· · · · · · · · · · · · · · · · · · ·	
		D = 1.60	7. lbo

See page 36 for design

Page 33 of 37

Project Title: Engineer: Project ID: Project Descr:

Project File: tube steel_backup_1.ec6 Wood Beam LIC# : KW-06015149, Build:20.23.08.01 IMEG CORP (c) ENERCALC INC 1983-2023 DESCRIPTION: (E) 5 1/8x27 @ Grid line 4 CODE REFERENCES Calculations per NDS 2018, IBC 2021, ASCE 7-16 Load Combination Set : IBC 2018 **Material Properties** E : Modulus of Elasticity Analysis Method : Allowable Stress Design 2400 psi Fb + Load Combination : IBC 2018 Fb -1850 psi Ebend- xx 1800 ksi Fc - Prll Eminbend - xx 950 ksi 1650 psi Ebend- yy Fc - Perp 1600ksi 650 psi Wood Species DF/DF Fv 265 psi Eminbend - yy 850ksi Wood Grade 24F-V4 1100 psi Ft Density 31.21 pcf Beam Bracing Beam is Fully Braced against lateral-torsional buckling D(1.556(0).604) D(0.36) Lr(0.3) 5.125x27 pan = 44.50 ft Service loads entered. Load Factors will be applied for calculations. **Applied Loads** Beam self weight NOT internally calculated and added Uniform Load : D = 0.0180, Lr = 0.0150 ksf, Tributary Width = 20.0 ft, (Roof load) **Reinforcing required** Point Load : D = 1.563 k @ 19.20 ft, (P1) Point Load : D = 0.6040 k @ 20.60 ft, (P2) Design N.G. DESIGN SUMMARY Maximum Bending Stress Ratio = .391: 1 Maximum Shear Stress Ratio = 0.475:1 Section used for this span Section used for this span 5.125x27 5.125x27 fb: Actual fv: Actual 3,570.70psi 157.23 psi = = F'b F'v 331.25 psi 2,566.19 psi = = Load Combination Load Combination +D+I r +D+Ir Location of maximum on span 20.788ft Location of maximum on span 0.000 ft = Span # where maximum occurs Span # 1 Span # where maximum occurs Span #1 _ Maximum Deflection 1.760 in Ratio = Max Downward Transient Deflection 303 >=180 Span: 1 : Lr Only Max Upward Transient Deflection 0 in Ratio = 0<180 n/a Max Downward Total Deflection 4.318 in Ratio = 123 < 240 Span: 1 : +D+Lr Max Upward Total Deflection 0 in Ratio = 0<240 n/a Maximum Forces & Stresses for Load Combinations Max Stress Ratios Moment Values Shear Values Load Combination C_V C; C F'b Segment Length Span # Μ ٧ Ct CLx Cfu M fb v fv F'v CD CM D Only 0.0 0.00 0.0 0.0 Length = 44.50 ft 1.162 0.385 0.90 1.00 1.00 1.00 0.855 1.00 1.00 1.00 111.41 2,147.1 1,847.7 8.46 91.7 238.5 1.00 1.00 0.855 1.00 1.00 1.00 0.0 +D+Lr 1 00 0.00 0.0 0.0 Length = 44 50 ft 0.475 1.25 1.00 1.00 1.00 0.855 1.00 1.00 1.00 185.29 3,570.7 2,566.2 14.50 157.2 331.3 1 1.391 +D+0.750Lr 1.00 1.00 1.00 0.855 1.00 1.00 1.00 0.0 0.00 0.0 0.0 Length = 44.50 ft 1.253 0.425 1.25 1.00 1.00 1.00 0.855 1.00 1.00 1.00 166.81 3,214.6 2,566.2 12.99 140.9 331.3 1 +0.60D 1.00 0.855 1.00 1.00 1.00 0.0 1.00 1.00 0.00 0.0 0.0 1.00 0.855 Length = 44.50 ft 1 0.392 0.130 1.60 1.00 1.00 1.00 1.00 1.00 66.85 1,288.2 3,284.7 5.08 55.0 424.0 For GLB, M_{allow} = F'_b * S = 2,566.19psi * 5.125 * 27²/6 = 133.2 kip-ft 185.29 k-ft - 133.2 kip-ft = 52.1 kip-ft Extra moment capacity required Page 33 of 37

LDC:: MECCORP (c) ENERCALCING: 182 DESCRPTION: (c) 51 /1827 @ Grid line 4 Mar. ** Defl Location in Span Load Combination Mex. ** Defl Location in Span Load Combination Load Combination Span Max. ** Defl Location in Span Load Combination Mex. ** Defl Location in Span Load Combination Mex. ** Defl Location in Span T 5 and the span to a support in Support	LIC# : KW-06015149, Build:20.23.08	.01	IMEG	CORR		
Description: (c) 5 interverse (c) and interverse (DESCRIPTION: (E) 3 1	1912 @ Crid line 1	INIEG	CORF	(C) ENERCA	LC INC 1983-20
Overall Maximum Deflections Load Combination Max. "** Defl Location in Span Load Combination Values in (RPS Max Upward from Load Conditions 15.898 15.639 Max Upward from Load Cases 9.223 8.844 0.001 Colspan="2">Colspan="2" Other in Load Conditions 15.898 15.639 Max Upward from Load Cases 9.223 8.844 0.001 Colspan="2" Tension load: T = M /d Tension load: T = M /d Tension load: T = M /d Colspan="2" </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Lotal Contentation Spain Was Defit Losation in Spain Lotal Contentation Was Form (2000) 0.01 Vertical Reactions Support notation : Far left is #1 Values in (kHS) 0.01 Load Combination Support 1 \$18,990 rt (2) 0.01 Max Upward from Load Combinations 15,893 15,833 15,833 Moment 52.1 kip-ft resisted by steel plate 3 3602 D Only 6,875 6,675 5002 Tension load: T = M / d T = 52.1 *12 kip-in / (27"/2) = 46.3 kips 5002 for 1/4 x 5.5 " steel plate: Talex. = 50 ksi * 1/4 * 5.5 *0.7 = 48.1 kips > 46.3 kips Okay for 1/4 x Simp. SDS screw: Z = 420 lbs Cd = 1.0 Z" = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 - 3") /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips Okay	Overall Maximum Deflect	ions	Leastian in Cos	n Lood Combination	May UUDate	tratian in Cn
Vertical Reactions Lead Combination Text left and Combination Support 1 Support 1 Max Upward from Load Combinations 15.388 15.338 Max Upward from Load Combinations 15.388 15.338 Max Upward from Load Combinations 15.388 15.338 15.338 15.338 0 only 9.222 8.964 D only 9.222 8.964 D only 9.222 8.964 D only 15.338 15.358 15.3		5pan Max Den	22 250	In Load Complication		
Interview Support 1 Support 2 Max Upward from load Conditions 15.898 15.839 Max Upward from load Combinations 15.898 15.839 Max Upward from load Cambinations 16.875 8.875 Max Upward from load Cambinations 6.675 8.675 Max Upward from load Cambinations 16.875 8.675 Tension load: T = M / dl T = 52.1 *12 klip-in / (27"/2) = 46.3 kips 607 1/4 x 5.5 * 17 = 48.1 kips for 1/4 x 5.5 * steel plate: T = 52.1 *12 klip-in / (27"/2) = 46.3 kips > 46.3 kips 0 kay for 1/4 Simp. SDS screw: Z = 420 lbs Cd = 1.0 Z" = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 - 3") / 4" +1] *2 = 168 screws Total 4	Vertical Reactions	1 4.5162	22.230 Sur	port notation : Far left is #	1 Values in KIPS	0.00
Max Upward from Load Conditions 15.886 15.839 Max Upward from Load Cases 9.223 9.864 D Only 15.888 15.839 Har Upward from Load Cases 9.223 9.864 D Only 15.888 15.839 Hour 15.888 15.879 Hour 16.875 6.675 Tension load: T = M / d! Image: Construct the exact the	Load Combination	Suppo	ort 1 Support 2			
Tension load: $T = M / d$ $T = 52.1 * 12 \text{ kip-in} / (27"/2) = \frac{46.3 \text{ kips}}{46.3 \text{ kips}}$ for 1/4 x 5.5 " steel plate: $T_{Allow} = 50 \text{ ksi} * 1/4 * 5.5 * 0.7 = 48.1 \text{ kips}$ > 46.3 kips Okay for 1/4 Simp. SDS screw: Z = 420 lbs Cd = 1.0 Z" = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 - 3") /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips Okay	Max Upward from all Load Con Max Upward from Load Comb Max Upward from Load Cases D Only +D+Lr +D+0.750Lr +0.60D Lr Only	Totitions 15 inations 15 9 9 15 14 5. 6	6.898 15.639 6.898 15.639 .223 8.964 .223 8.964 .223 8.964 .229 13.970 .534 5.378 .675 6.675			
$T = 52.1 * 12 \text{ kip-in} / (27"/2) = \underline{46.3 \text{ kips}}$ for 1/4 x 5.5 " steel plate: $T_{Allow} = 50 \text{ ksi} * 1/4 * 5.5 * 0.7 = 48.1 \underline{\text{kips}}$ > 46.3 kips Okay for 1/4 Simp. SDS screw: $Z = 420 \text{ lbs} \qquad Cd = 1.0$ Z" = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 - 3") / 4" + 1] * 2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips Okay	Tens	ion load: $T = M /$	d	Side	602	
for 1/4 x 5.5 " steel plate: $T_{Allow.} = 50 \text{ ksi } * 1/4 * 5.5 * 0.7 = 48.1 \text{ kips}$ > 46.3 kips Okay for 1/4 Simp. SDS screw: Z = 420 lbs Cd = 1.0 Z'' = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 -3'') /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips Okay		T = 52.1 *12 +	kip-in / (27"	/2) = <u>46.3 kips</u>		
$T_{Allow} = 50 \text{ ksi} * 1/4 * 5.5 * 0.7 = 48.1 \text{ kips}$ $> 46.3 \text{ kips Okay}$ for 1/4 Simp. SDS screw: $Z = 420 \text{ lbs} \qquad Cd = 1.0$ $Z'' = 420 \text{ lbs}$ 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 - 3'') / 4'' + 1] * 2 = 168 screws Total $420 lbs * 168 = 70.77 kips$ $> 46.3 kips Okay$	for	1/4 x 5.5 " steel p	plate:			
> 46.3 kips Okay for 1/4 Simp. SDS screw: Z = 420 lbs Cd = 1.0 Z'' = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 -3'') /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips Okay	*	r _{Allow.} = 50 ksi *	1/4 * 5.5 *	0.7 = 48.1 <u>kips</u>		
$Z = 420 \text{ lbs} \qquad Cd = 1.0$ $Z'' = 420 \text{ lbs}$ 28' long steel plate, 2 rows of screw @ 4'' O.C. $[(28' * 12 - 3'') / 4'' + 1] * 2 = 168 \text{ screws Total}$ $420 \text{ lbs } * 168 = 70.77 \text{ kips}$ $> 46.3 \text{ kips } \text{Okay}$	for	1/4 Simp. SDS so	crew:	> 46.3 kips O	kay	
Z" = 420 lbs 28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 -3") /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips_Okay		Z = 420 lbs	G Cd =	1.0		
28' long steel plate, 2 rows of screw @ 4" O.C. [(28' * 12 -3") /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips_Okay		Z" = 420 lbs	6			
[(28' * 12 -3") /4" +1] *2 = 168 screws Total 420 lbs * 168 = 70.77 kips > 46.3 kips_Okay	28'	ong steel plate, 2	rows of sc	rew @ 4" O.C.		
420 lbs * 168 = 70.77 kips > 46.3 kips_Okay		[(28' * 12 -3") /4	4" +1] *2 =	168 screws Total		
> 46.3 kips. Okav		420 lbs	* 168 = 70	.77 kips		
			> 4	6.3 kips_Okay		

Wood Beam												Filiped		sieei_ba	ackup_1.	000
LIC# : KW-06015149, B	uild:20.23.08.01	ഗ് ര (Grid li	ine 10)	I	IMEG CO	ORP					(c) E	NERCALC	INC 198	3-20 23
DESCRIPTION.		21 @ 0			,											
				40												
Load Combination	Set : IBC 20	5 2021, 18	ASCE	= 7-16)											
Material Properti	ies															
Analysis Method :	Allowable Stre	ss Desig	In				F	Fb +		2	,400.0 ps	E : M	odulus of E	Elasticity		
Load Combination :	IBC 2018						F	Fb - Fc - Prli	I	1. 1.	,850.0 psi .650.0 psi	Et Er	end- xx ninbend - x	1, (X	800.0ks 950.0ks	i
Wood Species :	DF/DF						F	Fc - Pe	rp		650.0 ps	Et	end- yy	1,	600.0ks	i
Wood Grade :	24F - V4						ł	Fv Ft		1.	265.0 ps 100.0 ps	Er De	ninbend - y ensity	/y 3	850.0ks 1 210pc	l f
Beam Bracing	Beam is Fully I	Braced a	igainst	latera	I-torsio	nal buo	ckling	-			,					
							D(1.68	37)								
10.						D	(0.36) L	.r(0.3)				72				
*		\$					ţ					\$				\$
6							E 1054	07								Q
							0.1238	.21							4	
w.						S	pan = 44	4.50 ft								
							20194 000									•
Applied Loads Beam self weight	NOT internal	ly calcul	lated a	and ac	dded			Servi	ce loa	ads ent	tered. Loa	ad Factors	will be app	lied for c	alculatio	ns.
Applied Loads Beam self weight Uniform Load : Point Load : D	NOT internall D = 0.0180, = 1.687 k @	ly calcul Lr = 0. 22.250	lated ; 0150 ft, (P	and ac ksf, 1 1)	dded Fributa	ary Wid	dth = 2	Servi 20.0 ft,	ce loa (Roc	ads ent	tered. Loa	ad Factors am @	will be app <mark>Grid lin</mark>	lied for c	alculation	ns. IS
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending	NOT internall D = 0.0180, = 1.687 k @ RY	ly calcul Lr = 0. 22.250	lated a .0150 ft, (P	and ac ksf, 1 1)	dded Fributa	ary Wid	dth = 2	Servi 20.0 ft,	(Roc	ads ent	tered. Loa	ad Factors am @	will be app	ulied for ca e 4 G Desiç	overn	ns. I <mark>S</mark>
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t	NOT internall D = 0.0180, = 1.687 k @ RY Stress Ratio :his span	ly calcul Lr = 0. 22.250	lated a 0150 ft, (P	and ac ksf, 1 1) 5.	dded Fributa 1.30 125x2	ary Wid 58: 1	dth = 2 Ma	Servi 20.0 ft, aximun Sect	(Roc n She	ads ent of load ear Stu	tered. Loa I) Be ress Rat r this spa	ad Factors am @ io	will be app Grid lin =	e 4 G Desig 5.1	alculation OVERN 0.463 : 25x27	ns. I <mark>S</mark>
Applied Loads Beam self weight Uniform Load : D Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio his span Jal	ly calcul Lr = 0. 22.250	lated a 0150 ft, (P	and ac ksf, T 1) 5. 3	dded Fributa 1.3(125x2	ary Wio 58 1 27 05 psi	dth = 2 Ma	Servi 20.0 ft, aximun Sect	(Roc n She	ads ent of load ear Stri ised foi fv: A	tered. Loa I) Be ress Rat r this spar actual	ad Factors am @ io 1	will be app Grid lin = =	e 4 G Desig	overn 0.463 : 25x27 53.23 p	ns. I <mark>S</mark> 1 osi
Applied Loads Beam self weight Uniform Load : Doint Load : DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio this span Jal	ly calcul Lr = 0. 22.250 = = =	lated a 0150 ft, (P	and ac ksf, 1 1) 5. 3 2	dded Tributa 1.3(125x2 5,510.0 5,566.7	ary Wid 58 1 27 05 psi 19 psi	dth = 2 Ma	Servi 20.0 ft, aximun Sect	(Roc n She tion u	ads ent of load ear Str sed for fv: A F'v	tered. Loa) Be ress Rat r this span actual	ad Factors am @ io n	will be app Grid lin = = =	e 4 G Desig 5.1	alculation overn 0.463 : 25x27 53.23 p 331.25 p	ns. IS 1 osi
Applied Loads Beam self weight Uniform Load : D Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxim	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio this span ual n num on span	ly calcul Lr = 0. 22.250	lated ; 0150 ft, (P	and ac ksf, 1 1) 5. 3 2	dded Tributa 1.3(125x2 5,510.0 5,566.1 +D+ 22.2	ary Wid 58 1 27 05 psi 19 psi Lr 50 ft	dth = 2 Ma	Servi 20.0 ft, aximun Sect Load	(Roc (Roc tion u d Cor ation	ads ent of load ear Sti ised for fv: A F'v mbinati of max	tered. Loa I) Be ress Rat r this span actual on imum on	ad Factors am @ io n span	will be app Grid lin = = =	e 4 G Desig 5.1	overn overn 0.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 ff	ns. IS 1 osi osi
 Applied Loads Beam self weight Uniform Load : D Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma 	NOT internal D = 0.0180, = 1.687 k @ RY I Stress Ratio this span Jal n num on span Iximum occurs	ly calcul Lr = 0. 22.250	lated ; 0150 ft, (P	and ac ksf, 1 1) 5. 3 2	dded Fributa 1.30 125x2 5,510.0 5,566.7 +D+ 22.23 Span #	ary Wid 58 1 27 05 psi 19 psi 50 ft 1	dth = 2 Ma	Servi 20.0 ft, aximun Sect Loaa Loaa Spa	(Roc n She tion u d Cor ation n	ads ent of load ear Stri ised for fv: A F'v mbinati of max there m	tered. Loa I) Be ress Rat r this span actual on imum on naximum	ad Factors am @ io n span occurs	will be app Grid lin = = = =	olied for ca e 4 G Desig 5.1 1 3 Sp	overn overn o.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 fi can # 1	ns. IS 1 osi osi
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxim Span # where ma Maximum Deflet Max Downward	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio this span ual n num on span iximum occurs tion Transient Defi	ly calcul Lr = 0. 22.250 = = = =	lated a 0150 ft, (P	and ac ksf, 1 1) 5. 3 2	dded Tributa 1.3(125x2 5,510.0 .,566.7 +D+ 22.2 Span #	ary Wid 58 1 27 05 psi 19 psi Lr 50 ft 1 1 19 psi	dth = 2 Ma	Servi 20.0 ft, aximun Sec Loaa Loa Spa	(Roc (Roc n She tion u d Cor ation n n # w	ads ent of load ear Sti ised foi fv: A F'v mbinati of max where m	tered. Loa) Be ress Rat r this span actual on imum on haximum 1 : Lr On	ad Factors am @ io n span occurs	will be app Grid lin = = = =	e 4 G Desig 5.1 3 Sp	overn 0.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 ft ban # 1	ns. S 1 osi osi
Applied Loads Beam self weight Uniform Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxim Span # where ma Maximum Deflec Max Downward Max Upward Tra	NOT internal D = 0.0180, = 1.687 k @ Stress Ratio this span Jal n num on span iximum occurs tion Transient Deflect	ly calcul Lr = 0. 22.250 , = = = = = ection :ion	lated a 0150 ft, (P	and ac ksf, 1 1) 5. 3 2 3 2 3 1.760	dded Tributa 1.30 125x2 5,510.0 5,566.7 +D+ 22.2 Span # 0 in R	ary Wid 58 1 27 05 psi 19 psi 19 psi 15 ft 1 atio = atio =	dth = 2 Ma 30	Servi 20.0 ft, 20.0 ft, Sect Load Loca Spa 03 >=18 0 <180	(Roc (Roc n Sha tion u d Cor ation n # w 30	ads ent of load ear Stri sed for fv: A F'v mbinati of max there m Span: n/a	tered. Loa I) Be ress Rat r this span actual on imum on naximum 1 : Lr Onl	ad Factors am @ io n span occurs y	will be app Grid lin = = = = =	e 4 G Desig 5.1 3 Sp	overn overn 10.463 : 25x27 53.23 p 31.25 p +D+Lr 0.000 fi ban # 1	ns. IS 1 osi t
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxim Span # where ma Maximum Deflec Max Downward Max Downward Max Downward Max Downward	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio this span Jal n num on span iximum occurs tion Transient Deflect Total Deflection tal Deflection	ly calcul Lr = 0. 22.250 = = = = = =	lated a 0150 ft, (P	and ac ksf, 1 1) 5. 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3	dded Tributa 1.3(125x2 5,510.0 5,566.7 +D+ 22.2 5,510.0 (,566.7 +D+ 22.2 5,510.0 (,566.7 +D+ 22.2 5,510.0 (,566.7 +D+ 22.2 5,510.0 (,566.7) (,566.	ary Wid 58 1 27 05 psi 19 psi Lr 50 ft 1 atio = atio = atio = atio =	dth = 2 Ma 30 12	Servi 20.0 ft, 20.0 ft, Loac Loac Spa 0<180 26 <240 0 <240	(Roc (Roc tion u d Cor ation u n # w 30	ads ent of load ear Sti ised for fv: A F'v mbinati of max where m Span: n/a Span: n/a	tered. Loa) Be ress Rat r this span actual on imum on haximum 1 : Lr Onl 1 : +D+Lr	ad Factors am @ io n span occurs	will be app Grid lin = = = =	e 4 G Desig 5.1 3 Sp	alculation OVERN 0.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 ft ban # 1	ns. I <mark>S</mark> 1 osi osi
Applied Loads Beam self weight Uniform Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflet Max Downward Max Upward Tr Max Downward Max Upward To	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio this span ual n num on span iximum occurs tion Transient Deflect Total Deflection ital Deflection	ly calcul Lr = 0. 22.250 = = = = = lection tion 20	lated a 0150 ft, (P	and ac ksf, 1 1) 5. 3 2 1.760 (4.227	dded fributa 1.3(125x2 5510.0 5566.1 +D+ 22.2 5pan # 0 in R 0 in R 0 in R 0 in R	ary Wid 58:1 27 35 psi 19 psi Lr 50 ft 11 atio = atio = atio = atio =	dth = 2 Ma 30 12	Servi 20.0 ft, 20.0 ft, Load Loca Spa 03 >=18 0 <180 26 <240 0 <240	(Roc (Roc tion u d Cor tion u ation w 80)	ads ent of load ear Stri sed for fv: A F'v mbinati of max rhere m Span: n/a Span: n/a	tered. Loa I) Be ress Rat r this span soctual on imum on naximum 1 : Lr Onl 1 : +D+Lr	ad Factors am @ io n span occurs y	will be app Grid lin = = = =	e 4 G Desig 5.1 3 Sp	overn overn o.463 : 25x27 53.23 p 31.25 p +D+Lr 0.000 fi oan # 1	ns. S 1 ssi ssi
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflet Max Downward Max Upward Tra Max Downward Max Upward To Maximum Forc Load Combination	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratio this span ual n num on span aximum occurs tion Transient Deflection tal Deflection tal Deflection :es & Stress	ly calcul Lr = 0. 22.250 = = = = = ection tion on ses for tress Rat	lated a 0150 ft, (P	and ac ksf, T 1) 5. 3 2 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 3 3 3 2 3 3 3 2 3	dded Fributa 1.3(125x2 5,510.0 5,566.7 +D+ 22.2 5pan # 0 in R 0 in R 0 in R 0 in R 0 in R	ary Wid 58 1 27 05 psi 19 psi Lr 50 ft 1 11 atio = atio = atio = atio =	dth = 2 Ma 30 12 s	Servi 20.0 ft, 20.0 ft, Sect Loaa Loaa Loca Spa 0<180 26<240 0<240	(Roc (Roc tion u d Cor ation u n # w 30)	ads ent of load ear Stri sed for fv: A F'v mbinati of max there m Span: n/a Span: n/a	tered. Loa) Be ress Rat r this span actual on naximum 1 : Lr Onl 1 : +D+Lr Mome	ad Factors am @ io n span occurs y	will be app Grid lin = = = =	olied for ca e 4 G Desig 5.1 3 Sp	alculation OVERN 0.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 ff ban # 1 hear Val	ns. S 1 osi osi t
Applied Loads Beam self weight Uniform Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflec Max Downward Max Downward Max Downward Max Upward Tra Max Downward Max Upward To Maximum Forc	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratic this span ual n num on span iximum occurs tion Transient Deflect total Deflection ital Deflection ital Deflection tal Deflection tal Deflection tal Deflection	ly calcul Lr = 0. 22.250 = = = = = ection tion on ses for tress Rat	lated a 0150 ft, (P tios CD	and ac ksf, T 1) 5. 3 2 1.760 (4.227 (0 d Co CM	dded fributa 1.30 125x2 5,510.0 5,566.7 +D+ 22.2 5pan # 0 in R 7 in R 0 in R 0 in R 7 in R 0 in R	ary Wid 38 1 27 35 psi 19 psi Lr 50 ft 1 atio = atio = atio = atio = atio = CLx	dth = 2 Ma 30 12 s C _V	Servi 20.0 ft, 20.0 ft, Sect Load Loca Spa 0<180 0<180 0<180 0<240 0<240 Cfu	(Roo (Roo n Sho tion u d Cor ation u m # w 30)))	ads ent of load ear Stri sed for fv: A F'v mbinati of max here m Span: n/a Span: n/a C r	tered. Loa I) Be ress Rat r this span actual on imum on naximum 1 : Lr Onl 1 : +D+Lr Mome M	ad Factors ad Factors ad Factors ad Factors part (2010) ad Factors	will be app Grid lin = = = = = = =	e 4 G Desig 5.1 3 Sp Sp	overn overn gn N.G. 0.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 fr ban # 1	ns. S 1 ssi ssi t t
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflec Max Downward Max Downward Max Upward To Max Upward To Max Upward To Coad Combination Segment Length D Only	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratic this span ual n num on span aximum occurs tion Transient Deflect Total Deflection tal Deflection tal Deflection tal Deflection tal Deflection tal Deflection	ly calcul Lr = 0. 22.250 = = = = = ection tion on ses for tress Rat	lated a 0150 ft, (P r Loa tios CD	and ac ksf, T 1) 5. 3 2 3 1.760 (4.227 (d Col CM	dded fributa 1.3(125x2 5,510.0 5,566.4 +D+ 22.2 5pan # 0 in R 0 in R 0 in R 0 in R 0 in R 0 in R 0 in R	ary Wie 58:1 27 35 psi 19 psi Lr 50 ft 11 atio = atio = atio = atio = atio = CLx	dth = 2 Ma 30 12 s C _V	Servi 20.0 ft, 20.0 ft, Sect Load Loca Spa 0<180 0<180 0<180 0<240 0<240 Cfu	(Roc (Roc n She tion u d Cor ation u a a b)) C i	ads ent of load ear Stri sed for fv: A F'v mbinati of max there m Span: n/a Span: n/a C	tered. Loa I) Be ress Rat r this span on imum on naximum 1 : Lr Onl 1 : +D+Lr Mome M	ad Factors am @ io span occurs y <u>nt Values</u> fb	will be app Grid lin = = = = = = =	e 4 G Desig 5.1 3 Sp Sp V 0.00	alculation oVern 0.463 : 25x27 53.23 p 31.25 p +D+Lr 0.000 fb ban # 1 hear Val fv 0.0	ns. S 1 ssi ssi t t T'v 0
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxim Span # where ma Maximum Deflec Max Downward Max Downward Na Downward	NOT internal D = 0.0180, Stress Ratio NAY Stress Ratio this span ual n num on span aximum occurs tion Transient Deflection total Deflection	ly calcul Lr = 0. 22.250 = = = = = = = = = = = = v 0.368	lated a 0150 ft, (P Loa tios CD 0.90	and ac ksf, T 1) 5. 3 2 3 2 3 1.760 (4.227 (0 d Co d CM 1.00	dded Fributa 1.36 125x2 5,510.0 5,566.7 +D+ 22.23 Span # 0 in R 7 in R 0 in R 7 in R 0 in R 0 in R 1 in R 1 in R 1 in R	ary Wie 58 1 27 55 psi 19 psi Lr 50 ft 1 atio = atio = atio = atio = CLx 1.00	$dth = 2$ Ma 30 12 s C_V 0.855	Servi 20.0 ft, 20.0 ft, Sect Load Load Load Spa 0 <180 0 <180 0 <180 0 <240 Cfu 1.00	(Roo (Roo tion u d Cor ation u 30)) C i 1.00	ads ent of load ear Stri sed for fv: A F'v mbinati of max there m Span: n/a Span: n/a C r 1.00	tered. Loa I) Be ress Rat r this span actual on imum on haximum 1 : Lr Onl 1 : +D+Lr Mome M 107.88	ad Factors ad Factors ad Factors ad Factors p span occurs y nt Values fb 2,079.0	will be app Grid lin = = = = = = = F [*] b 0.0 1,847.7	e 4 G Desig 5.1 3 Sp Sp V 0.00 8.09	alculation overn o.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 ff baan # 1 hear Val fv 0.0 87.7	ns. S 1 bsi bsi t ues F'v 0 238
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflec Max Downward Max Upward Tra Max Downward Max Upward Tra Max Downward Max Upward Tra Max Downward Max Upward To Coad Combination Segment Length D Only Length = 44.50 ft	NOT internal D = 0.0180, = 1.687 k @ RY Stress Ratic this span ual n num on span iximum occurs tion Transient Deflect total Deflection tal Deflection tes & Stress Max St Span # M	ly calcul Lr = 0. 22.250 = = = = = ection tion on ses for tress Rat V 0.368	lated a 0150 ft, (P Loa tios CD 0.90	and ac ksf, T 1) 5. 3 2 5. 3 2 5. (4.22) (0 d Co c M 1.00 1.00	dded fributa 1.30 125x2 5510.0 5566.7 +D+ 22.22 Span # 0 in R 7 in R 0 in R 0 in R 0 in R 1.00 1.00 1.00 1.00 1.00	ary Wid 58 1 27 35 psi 19 psi 19 psi 1 27 50 ft 1 atio = atio =	dth = 2 Ma 300 12 S C_V 0.855 0.855 0.855	Servi 20.0 ft, 20.0 ft, Sect Load Loca Spa 0<180 0<180 0<240 0<240 0<240 Cfu 1.00 1.00	(Roc (Roc n Sho tion u d Corn ation u a 0))) (C i 1.00 1.00 1.00	ads ent of load ear Stri sed for fv: A F'v mbinati of max here m Span: n/a Span: n/a C r 1.00 1.00	tered. Loa I) Be ress Rat r this span actual on imum on haximum 1 : Lr Onl 1 : +D+Lr Mome M 107.88 182.14	ad Factors ad Factors ad Factors ad Factors part (2000) part (200	will be app Grid lin = = = = = = F ['] b 0.0 1,847.7 0.0 2,566 2	e 4 G Desig 5.1 1 3 5.1 2 5.1 1 3 5 5 1 2 5 5 1 2 5 1 2 5 5 1 2 5 5 1 3 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 5 1 2 3 5 5 5 5 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	alculation overn gn N.G. 0.463 : 25x27 53.23 p 31.25 p +D+Lr 0.000 fi ban # 1 hear Val fv 0.0 87.7 0.0 153.2	ues F'v 238 0 331
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflec Max Downward Max Downward Max Downward Max Upward To Max Downward Max Upward To Max Downward Max Upward To Max Downward Max Upward To Load Combination Segment Length D Only Length = 44.50 ft +D+Lr Length = 44.50 ft	NOT internal D = 0.0180, = 1.687 k @ XY Stress Ratic this span ual n num on span aximum occurs tion Transient Deflect Total Deflection tal Deflection tal Deflection tal Deflection Span # M 1 1.125 1 1.368	ly calcul Lr = 0. 22.250 = = = = lection tion on $\frac{ses for}{ress Rat}$ 0.368 0.463	lated a 0150 ft, (P Loa tios CD 0.90 1.25	and ac ksf, T 1) 5. 3 2 3 1.760 (4.227 (d Col CM 1.00 1.00 1.00 1.00	dded fributa 1.30 125x2 5510.0 5510.0 5510.0 5510.0 5510.0 5510.0 22.2 5510.0 5510.0 22.2 5510.0 5510.0 20.0 1.0 1.00 1.00 1.00 1.00	ary Wie 58: 1 27: 35: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37: 37:	dth = 2 Ma 30 12 S C_V 0.855 0.855 0.855 0.855	Servi 20.0 ft, 20.0 ft, 20.0 ft, 20.0 ft, 20.0 ft, 20.0 ft 20.0 ft 20.0 ft 20.0 ft 20.0 ft 20.0 ft 20.0 ft 20.0 ft 20.0 ft, 20.0	(Roc (Roc n She tion u d Cor ation u m # w 30))	ads ent of load ear Strised for fv: A F'v mbinati of max there m Span: n/a Span: n/a C r 1.00 1.00 1.00 1.00	tered. Loa I) Be ress Rat r this span on imum on naximum 1 : Lr Onl 1 : +D+Lr Mome M 107.88 182.14	ad Factors am @ io span occurs y <u>nt Values</u> fb 2,079.0 3,510.0	will be app Grid lin = = = = = F'b 0.0 1,847.7 0.0 2,566.2 0 0	e 4 G Desig 5.1 3 5.1 3 5.1 3 5.1 3 5.1 3 5.1 3 5.1 3 5.1 1 3 5 5 1 4 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 1 1 3 5 5 5 1 1 3 5 5 5 5	alculation oVern 0.463 : 25x27 53.23 p 31.25 p +D+Lr 0.000 fb ban # 1 hear Val fv 0.0 87.7 0.0 153.2 0.0	ues F ^v v 0 238 0 3311
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflec Max Downward Max Downward Max Downward Max Upward Tro Maximum Forc Load Combination Segment Length D Only Length = 44.50 ft +D+Lr Length = 44.50 ft	NOT internal D = 0.0180, Stress Ratio this span ual n num on span aximum occurs tion Transient Deflection total Deflection total Deflection :es & Stress Span # M 1 1.125 1 1.368 1 1.228	ly calcul Lr = 0. 22.250 = = = = = = lection tion n ses for tress Rat V 0.368 0.463 0.413	lated a 0150 ft, (P Loa tios CD 0.90 1.25 1.25	and ac ksf, T 1) 5. 3 2 1.760 (4.227 (d Co 1.00 1.00 1.00 1.00 1.00 1.00	dded Fributa 1.36 125x2 5,510.0 5,566.7 +D+ 22.23 Span # 0 in R 7 in R 0 in R 7 in R 0 in R 7 in R 0 in R 1.00 1.00 1.00 1.00 1.00 1.00	ary Wie 58 1 27 35 psi 19 psi 19 psi 19 psi 1 27 50 ft 1 10 = atio =	dth = 2 Ma 30 12 $S = C_V$ 0.855 0.855 0.855 0.855 0.855	Servi 20.0 ft, 20.0 ft, Seci Load Loca Spa 0 <180 0 <180 0 <240 0 <240 Cfu 1.00 1.00 1.00 1.00 1.00 1.00	(Roo (Roo tion u d Cor ation u m # w 30))) 1.00 1.00 1.00 1.00 1.00 1.00	ads ent of load ear Stri sed for fv: A F'v mbinati of max there m Span: n/a Span: n/a C T 1.00 1.00 1.00 1.00 1.00	tered. Loa I) Be ress Rat r this span actual on imum on haximum 1 : Lr Onl 1 : +D+Lr Mome M 107.88 182.14 163.57	ad Factors ad Factors ad Factors ad Factors pan occurs y nt Values fb 2,079.0 3,510.0 3,152.3	will be app Grid lin = = = = = = = F ^r b 0.0 1,847.7 0.0 2,566.2 0.0 2,566.2	e 4 G Desig 5.1 1 3 5.2 5.1 1 3 5.1 1 3 5 5 5 1 3 5 7 0.00 8.09 0.00 14.14 0.00 12.62	alculation overn o.463 : 25x27 53.23 p 331.25 p +D+Lr 0.000 ff baan # 1 hear Val fv 0.0 87.7 0.0 153.2 0.0 153.2 0.0 153.2 0.0 153.2	ues F'v 238 0 331 0 331
Applied Loads Beam self weight Uniform Load : Point Load : D DESIGN SUMMA Maximum Bending Section used for t fb: Actu F'b Load Combination Location of maxin Span # where ma Maximum Deflec Max Downward Max Upward Tr Max Downward Max Upward Tr Max Downward Max Upward Tr Max Downward Max Upward Tr Max Downward Max Upward To Donly Length = 44.50 ft +D+Lr Length = 44.50 ft +D-0.750Lr Length = 44.50 ft +0.60D	NOT internal D = 0.0180, Stress Ratic this span ual n num on span aximum occurs ction Transient Deflect Total Deflection tal Deflection :es & Stress Max SI Span # M 1 1.125 1 1.368 1 1.228	ly calcul Lr = 0. 22.250 = = = = = = ection tion on ses for tress Rat V 0.368 0.463 0.413	lated a 0150 ft, (P Loa tios CD 0.90 1.25 1.25	and ac ksf, T 1) 5. 3 2 5. 3 2 5. 5. 3 2 5. 6 6 6 7.760 7.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	dded fributa 1.30 125x2 5510.0 5566.7 +D+ 22.22 Span # 0 in R 7 in R 0 in R 7 in R 0 in R 0 in R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ary Wie 58 1 27 35 psi 19 psi 19 psi 1 27 5 oft 1 atio = atio =	$dth = 2$ Ma 300 12 s C_V 0.855	Servi 20.0 ft, 20.0 ft, Sect Load Loca Spa 0<180 0<180 0<180 0<240 0<240 0<240 0<240 0<240 0<240 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(Roo (Roo n Sho tion u d Cor ation u m # w 30))) (C i i 1.00 1.00 1.00 1.00 1.00 1.00	ads ent of load ear Stri sed for fv: A F'v mbinati of max here m Span: n/a Span: n/a C r 1.00 1.00 1.00 1.00 1.00 1.00 1.00	tered. Loa I) Be ress Rat r this span actual on imum on haximum 1 : Lr Onl 1 : +D+Lr Mome M 107.88 182.14 163.57	ad Factors ad Fac	will be app Grid lin = = = = = = F'b 0.0 1,847.7 0.0 2,566.2 0.0 2,566.2 0.0	e 4 G Desig 5.1 1 3 5.1 3 5.1 1 3 5 5 1 3 5 5 1 2 5 1 2 5 1 2 5 1 2 3 5 5 1 1 3 3 5 5 5 1 1 3 3 5 5 5 1 5 5 5 5	alculation OVern 0.463 : 25x27 53.23 p 31.25 p +D+Lr 0.000 fi ban # 1 hear Val fv 0.0 87.7 0.0 153.2 0.0 153.2 0.0 136.9 0.0	ues F'v 238 0 331 0 331 0

Wood Beam					Project File: tube steel_	backup_1.ec6
LIC# : KW-06015149, Build:20.23.0	08.01		MEG COR	P	(c) ENERCA	LC INC 1983-2023
DESCRIPTION: (E) 5	1/8x27 @	Grid line 10				
Overall Maximum Deflect	ctions					
Load Combination	Span	Max. "-" Defl Location in	Span	Load Combination	Max. "+" Defl L	ocation in Span
+D+Lr	1	4,2266 22.	412		0.0000	0.000
Vertical Reactions			Support i	notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 Suppo	ort 2			
Max Upward from all Load C	onditions	15.529 15.	.529			
Max Upward from Load Com	binations	15.529 15.	.529			
Max Upward from Load Case	es	8.854 8.8	854			
D Only		8.854 8.8	854			*
		15.529 15.	.529			
+D+0.750Lr		13.860 13.	.860 310			
		6.675 6.	675			
		0.010 0.	010			
		•				

PROJECT MANUAL

412 W Hospitality Lane Upgrades Project No: 23008184.00

San Bernardino, California

PREPARED FOR:

SAN BERNARDINO COUNTY

TABLE OF CONTENTS

DIVISION 01 - GENERAL REQUIREMENTS SECTION 01 1000 - SPECIAL PROJECT CONDITIONS SECTION 01 2500 - SUBSTITUTIONS AFTER CONTRACT SECTION 01 2900 - APPLICATIONS FOR PAYMENT SECTION 01 2910 - PAYMENT FOR DELIVERED MATERIALS AND EQUIPMENT SECTION 01 3100 - PROGRESS REPORTS SECTION 01 3200 - CONSTRUCTION SCHEDULE SECTION 01 3300 - SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND PROJECT DATA SECTION 01 3400 - COORDINATION DRAWINGS SECTION 01 4000 - GENERAL TESTING PROCEDURES SECTION 01 5000 - TEMPORARY FACILITIES SECTION 01 6000 - MATERIAL & EQUIPMENT: DELIVERY, HANDLING & STORAGE SECTION 01 7300 - CUTTING AND PATCHING SECTION 01 7700 - PROJECT CLOSEOUT SECTION 01 7710 - CLEANUP SECTION 01 7720 - WARRANTIES AND GUARANTEES SECTION 01 7823 - SPARE PARTS AND MAINTENANCE MATERIALS SECTION 01 7839 - PROJECT RECORD DOCUMENTS **DIVISION 05 – METALS** SECTION 05 5000 - METAL FABRICATIONS SECTION 05 5213 - PIPE AND TUBE RAILINGS DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES SECTION 06 1000 - ROUGH CARPENTRY SECTION 06 1600 - SHEATHING SECTION 06 6651 - SOLID SURFACE FABRICATIONS **DIVISION 07 - THERMAL AND MOISTURE PROTECTION** SECTION 07 2100 - THERMAL INSULATION SECTION 07 5423 - THERMOPLASTIC POLYOLEFIN (TPO) ROOFING SECTION 07 6200 - SHEETMETAL FLASHING AND TRIM SECTION 07 9200 - JOINT SEALANTS **DIVISION 09 - FINISHES** SECTION 09 1100 - NON-LOAD BEARING METAL FRAMING SECTION 09 2500 - GYPSUM BOARD SECTION 09 3100 - CERAMIC TILE SECTION 09 9000 - PAINTING **DIVISION 10 - SPECIALTIES** SECTION 10 2100 - PHENOLIC-CORE TOILET PARTITIONS SECTION 10 8000 - TOILET AND BATH ACCESSORIES

DIVISION 22 - PLUMBING

SECTION 22 0500 - BASIC PLUMBING REQUIREMENTS SECTION 22 0505 - PLUMBING DEMOLITION FOR REMODELING SECTION 22 0529 - PLUMBING SUPPORTS AND ANCHORS SECTION 22 0553 - PLUMBING IDENTIFICATION SECTION 22 0593 - PLUMBING TESTING, ADJUSTING, AND BALANCING SECTION 22 0719 - PLUMBING PIPING INSULATION SECTION 22 1000 - PLUMBING PIPING SECTION 22 4000 - PLUMBING FIXTURES

DIVISION 23 - HEATING, VENTILATING, AND AIR-CONDITIONING(HVAC)

SECTION 23 0500 - BASIC HVAC REQUIREMENTS SECTION 23 0505 - HVAC DEMOLITION FOR REMODELING SECTION 23 0513 - MOTORS SECTION 23 0529 - HVAC SUPPORTS AND ANCHORS SECTION 23 0529 - HVAC VIBRATION ISOLATION SECTION 23 0550 - SEISMIC REQUIREMENTS FOR EQUIPMENT AND SUPPORTS SECTION 23 0553 - HVAC IDENTIFICATION SECTION 23 0593 - TESTING, ADJUSTING, AND BALANCING SECTION 23 0713 - DUCTWORK INSULATION SECTION 23 0923 - DIRECT DIGITAL CONTROLS FOR HVAC SECTION 23 0993 - SEQUENCE OF OPERATIONS SECTION 23 3100 - DUCTWORK SECTION 23 7416.12 - PACKAGED ROOFTOP HEAT PUMP UNITS 25 TON AND BELOW

DIVISION 26 - ELECTRICAL

SECTION 26 0500 - BASIC ELECTRICAL REQUIREMENTS SECTION 26 0503 - THROUGH PENETRATION FIRESTOPPING SECTION 26 0505 - ELECTRICAL DEMOLITION FOR REMODELING SECTION 26 0513 - WIRE AND CABLE SECTION 26 0527 - SUPPORTING DEVICES SECTION 26 0533 - CONDUIT AND BOXES SECTION 26 0553 - ELECTRICAL IDENTIFICATION SECTION 26 2726 - WIRING DEVICES SECTION 26 2816 - DISCONNECT SWITCHES SECTION 26 4300 - SURGE PROTECTION DEVICES

DIVISION 31 - CIVIL

SECTION 31 1000 - SITE CLEARING SECTION 31 2200 - GRADING SECTION 31 2313 - SUBGRADE PREPARATION

SECTION 31 2319 - EXCAVATION AND FILL FOR STRUCTURES

DIVISION 32 - CIVIL

SECTION 32 1213 - PREP COATS SECTION 32 1216 - ASPHALT PAVING SECTION 32 1236 - SEAL COATS SECTION 32 1613 - CURB AND GUTTER SECTION 32 1623 - SIDEWALKS SECTION 32 1723 - PAVEMENT MARKINGS SECTION 32 1726 - TACTILE WARNING SURFACING

SECTION 01 0000 - SPECIAL PROJECT CONDITIONS

Conditions of the Contract are hereby made a part of this Section.

PART 1 - GENERAL

1.01 SUPERINTENDENT

- A. The Contractor shall keep on the project at all times during all construction operations, a competent superintendent, who will be responsible for the coordination of all subcontractors, and quality control of the project.
- B. The Superintendent shall be approved by the Architect and the Owner at the commencement of the work. The Contractor will not be allowed to change the Superintendent without approval of the Architect and Owner.

1.02 PROTECTION OF BUILDING

A. Each Subcontractor shall be responsible for protection of his own materials and equipment.

1.03 TESTING LABORATORY

- A. The Owner shall select the testing laboratory and pay for all testing costs except as described in the following paragraphs.
- B. The testing laboratory shall report the results of all tests, in writing, simultaneously to the Architect. The Owner will not pay testing laboratory costs for tests or inspections required because of deficiencies in material or work. Tests and/or inspections may be required in order to determine whether or not there is a deficiency. Should the tests and/or inspections indicate a deficiency, these tests and/or inspections shall be paid for by the Contractor responsible for the deficiency.
- C. Upon completion of all tests and inspections, the Architect shall provide an approved copy to the Owner as part of project closeout.

1.04 ORDERING EQUIPMENT AND MATERIALS

- A. Upon award of the contract all Subcontractors shall immediately order all equipment and materials required, in ample quantities and for delivery at proper times to permit uninterrupted progress of the work.
- B. If at the time of ordering, it is determined that a shortage exists in any item, the Architect and Owner shall be immediately notified, in writing.

1.05 MANUFACTURERS' DIRECTIONS

- A. All manufactured articles, material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned, as directed by the manufacturer unless herein specified to the contrary.
- B. Two (2) copies of manufacturers' instructions shall accompany all deliveries to the job.

1.06 TOILET FACILITIES FOR WORKMEN (SEE SECTION 01 5000 - TEMPORARY FACILITIES)

1.07 FINAL APPROVAL AND ACCEPTANCE

A. For final approval and acceptance, the building shall be complete and ready for occupancy, with all connections to utilities in place, all equipment installed in operating condition, and "Record Drawings" delivered to the Architect. See Section 01 7700 - Project Closeout.

1.08 MATERIALS AND WORKMANSHIP GUARANTEES

- A. All portions of the work shall be guaranteed against defects in workmanship and materials for a period of one (1) year from date of acceptance of the structure, unless a longer guarantee is specifically called for herein.
- B. Neither the final payment, nor occupancy by the Owner, nor Notice of Completion, shall be considered to relieve the Contractor of his responsibility for any materials or workmanship found to be defective, and he shall remedy any such defects and pay for damage to other work resulting from such defects, which may appear within a period of one (1) year after the date on which Notice of Completion has been filed.
- C. The Owner shall report to the Contractor, through the Architect, any such defects found, and the Contractor shall make all repairs with reasonable promptness.

1.09 DRAWINGS AND SPECIFICATIONS

- A. Drawings which form a part of the Contract Documents and which accompany these Specifications are listed in the "Index to Drawings" on the Drawings.
- B. Specifications which form a part of the Contract Documents consist of Sections as listed in the "Table of Contents" in the forepart of these Specifications.
- C. Division of the Specifications: For convenience, these Specifications are arranged in several trade sections, but such separation shall not be considered as the limits of the work required by any sub-contractor or trade. The terms and conditions of such limitations are wholly between the Owner and the Contractor.
- D. Addenda to Specifications: Instructions issued by the Architect covering changes in, or special interpretations of, Drawings or Specifications, during the Bidding

Process, will be incorporated in the Contract Documents by means of Addenda before executing a Contract. The Contractor shall assure himself that changes and interpretations covered by such instructions have been correctly listed and described in the related Addenda.

1.10 CODES AND REGULATIONS

- A. General: The Contractor shall comply with all laws, ordinances, regulations and building code requirements governing the particular work, including, but not limited to those of:
 - 1. The California Building Code and San Bernardino County regulations.
 - 2. Industrial Safety of the State of California.
 - 3. The California Electrical Code, latest adopted edition.
 - 4. The California Plumbing Code, latest adopted edition.
 - 5. The California Mechanical Code, latest adopted edition.
 - 6. Federal Standards of the Department of Labor, Occupational Safety & Health Administration and all applicable State, County & City codes, ordinances, and regulations having jurisdiction thereof.
 - 7. California Fire Code, latest adopted edition.
 - 8. California Energy Regulations, latest adopted edition.
- B. Amendments: The above documents, latest editions as amended to date, are hereby made an integral part of these Specifications insofar as they apply to this work.

1.11 SHOP DRAWINGS AND SUBMITTALS (See Section 01 3300)

- A. Each Subcontractor shall submit thru the General Contractor, for the review of the Architect, Shop Drawings and/or Submittals required by the Specifications, or that which may be required by the Architect, and no work shall be fabricated by the subcontractor, except at his own risk, until such review and approvals have been made.
 - 1. One (1) electronic copy of Submittals and Shop Drawings shall be submitted to the Architect for review.
 - 2. Each Submittal and/or Shop Drawing shall be accompanied by a letter of transmittal which shall give a list of numbers and dates of the Drawings/ Submittals submitted. The General Contractor shall be responsible for accurately reviewing all Submittals and/or Shop Drawings prior to

> transmitting them to the Architect. Each Shop Drawing or Submittal shall bear the stamp of the contractor indicating he has reviewed them and verified their completeness and accuracy. Each subcontractor and the General Contractor shall be responsible for verifying all measurements. Shop Drawings and/or Submittals which do not contain the Contractors stamp shall be returned without the Architect's review, and the Architect shall not be responsible for any construction delays due to this.

- B. Shop Drawings and/or Submittals shall be complete in every respect and bound in sets. The Shop Drawings and/or Submittals submitted shall be marked with the name of project and numbered consecutively.
 - 1. Variations: If the Shop Drawings or submittals show variations, changes or substitutions from the requirements of the Construction Documents because of standard shop practice or other reasons, the Contractor shall make specific mention of such variations, in his letter of transmittal in order that, if acceptable, suitable action may be taken for proper adjustment, otherwise, the Contractor will not be relieved of the responsibility for executing the work in accordance with the Construction Documents, even though such Shop Drawings have been reviewed.
 - 2. Departures: If the Shop Drawings or Submittals as submitted indicate a departure from the Construction Document requirements which the Architect finds to be in the interest of the Owner, and/or be so minor as not to involve a change in the Contract price or time for performance, he may accept the Shop Drawings and/or Submittals.
 - 3. Review of Shop Drawings and/or Submittals will be general and except as otherwise provided above, shall not be construed: 1) as permitting any departure from the Construction Documents requirements; 2) as relieving the Contractor of the responsibility of any error in details, dimensions or otherwise that may exist on the Shop Drawings and/or Submittals; 3) as approving departures from additional details or instructions previously furnished by the Architect.

1.12 MANUFACTURED ITEMS

A. Manufactured items installed on this project, but not specifically covered in these specifications or on the Drawings, are to be installed in strict accordance with the manufacturer's printed instructions.

1.13 SCAFFOLDING

A. Scaffolding shall be the responsibility of each trade requiring same. Scaffolding shall be as approved by the State of California Safety Orders and CAL-OSHA.

1.14 SUBSTITUTIONS OF MATERIALS AND EQUIPMENT

- A. During Bidding Process: No substitutions allowed.
- B. After execution of Contract: See Section 01 2500 Substitutions and Product Options after Execution of Contract.

1.15 RECORD DRAWINGS

A. Subcontractors for Plumbing, Electrical, and HVAC work, shall provide and keep up to date, a complete set of "Record Drawings" in accordance with the requirements of Section 01 7839. These Record Drawings shall show every change from the approved Drawings and Specifications showing location, size and kind of every valve, fixture and run of pipe, wire and conduit. Prints for this purpose may be obtained from the Architect at the Contractor's cost. The job set of these Drawings shall be available for review on the job and be used only as a record set. On completion of this work, same shall be turned over to the Architect for review, before being given to the Owner.

1.16 REQUEST FOR INFORMATION

- A. All questions raised by the General Contractor and/or subcontractor during the construction period will be written on the Request For Information (RFI) form. A copy for use on this job is enclosed at the end of this section, and shall be duplicated for use by the Contractor. A word document of the RFI form is available from the Architect upon request.
- B. All questions are to be described in as much detail as possible, referencing the drawings and/or specifications. In order to expedite responses, make sure questions are printed, typed, or written in legible fashion. In order to establish priorities, the Contractor is to indicate on the form, a "respond by" date. Do not use "ASAP". The Architect shall make every effort to respond to all RFI's in a timely fashion, however, only those that indicate a "respond by" date will have priority.
- C. RFI's shall be sent to the Architect by e-mail.

END OF SECTION

SECTION 01 25 00 - SUBSTITUTIONS AND PRODUCT OPTIONS AFTER EXECUTION OF CONTRACT

PART 1 - GENERAL

1.01 DESCRIPTION

- A. General:
 - 1. Furnish all work and services for furnishing, submitting, processing and handling of requests for substitution and data for product options after execution of Contract. Any substitution or product option must be in accord with provisions of Contract Documents.
 - 2. Completely coordinate with work of other trades.
 - 3. See appropriate sections for specific items.
 - 4. See General Conditions for additional information.
- B. After bid opening, substitution requests and product options shall be governed by this section.

1.02 PRODUCT SELECTION - GENERAL

- A. Bids shall have been based on materials, equipment and procedures specified.
- B. Certain types of equipment and kinds of material are described in specifications by means of trade names, catalog numbers and/or manufacturer's names.
- C. Listing of a manufacturer implies acceptance of them only as supplier of a product which complies with specified item.
- D. Architect reserves right to require substitution or product option items to comply with color and pattern-wise base specified items.
- E. No substitution permitted between bid opening and execution of Contract.
- F. No substitution permitted after execution of Contract except by change order.

1.03 CONTRACTOR'S OPTIONS

- A. For products specified only by reference standards, use any product meeting standards.
- B. For products specified by naming several products or manufacturers, use any product or manufacturer named.

- C. For products specified by naming one manufacturer and product and several option manufacturers or products, select any named product and manufacturer which meets all specification criteria.
 - 1. Contract Documents are based on use of base specified manufacturer.
 - 2. By using an optional manufacturer or product, Contractor represents that he will be responsible for all adjustments to fit product to the work and for providing all additional work, equipment, and services required by use of product, at no additional cost.

1.04 SUBSTITUTION AFTER EXECUTION OF CONTRACT

- A. No substitution will be considered after execution of Contract except for nonavailability of specified item due to:
 - 1. Strikes.
 - 2. Lockouts.
 - 3. Bankruptcy.
 - 4. Discontinuance of production.
 - 5. Proven shortage.
- B. Notify General Contractor who will notify Architect, in writing, with substantiating data as soon as non-availability becomes apparent.
- <u>C.</u> Notify in time to avoid delay in construction. Long lead items not brought to the attention of the Architect as outlined in Section 01 1000, paragraph 1.04 A and B shall not be accepted as a reason for substitution.
- D. Forward submittal data as required for substitutions.

1.05 REQUESTS FOR SUBSTITUTION

- A. Only written requests with complete submittal data will be considered.
- B. Submit request in three copies.
- C. In making request for substitutions, or in using an approved substitution item, Contractor represents:
 - 1. He has investigated proposed product or method, and has determined that it is equal or superior in all respects to that specified, and that it will perform intended function.

- 2. He will provide same guarantee for substitute item as for product or method specified.
- 3. He will coordinate installation of accepted substitution into work, to include building modifications if necessary, making such changes as may be required for work to be complete in all respects.
- 4. He waives all claims for additional costs or additional time related to substitution which subsequently become apparent.
- 5. Acknowledgement of acceptance of these provisions in request.
- D. No verbal or written approvals other than by change order will be valid.

1.06 SUBSTITUTION SUBMITTAL DATA

- A. Complete data substantiating compliance of proposed substitution with Contract Documents.
- B. For products:

3.

- 1. Product identification, including manufacturer's name.
- 2. Manufacturer's literature, marked to indicate specific model, type, size, and options to be considered:
 - a. Product description.
 - b. Performance and test data.
 - c. Reference standards.
 - d. Difference in power demand, air quantities, etc.
 - e. Dimensional differences from specified unit.
 - Full size samples if requested. Architect reserves right to impound sample until physical units are installed on project for comparison purposes. Request pay all costs of furnishing and return of samples. Architect is not responsible for loss of, or damage to, samples.
- 4. Name and address of similar projects and name of Owner's representative who can be contacted, to discuss product, installation, and field performance data.
- C. For construction methods:

- 1. Detailed description of proposed method.
- 2. Illustrate on drawings.
- D. Itemized comparison of proposed substitute to specified item.
- E. Data relating to changes in construction schedule.
- F. Relation to separate contracts.
- G. Cost of proposed substitution in comparison with product or method specified.

1.07 REJECTION OF SUBSTITUTION

- A. Substitution will not be considered if:
 - 1. They are indicated or implied on shop drawings, or project data submittals, without formal request submitted in accord with this section.
 - 2. Acceptance will require substantial revision of Contract Documents, or building spaces.
 - 3. Request for substitution does not indicate specific item for which request is submitted. Acceptance of a manufacturer only will not be made.

END OF SECTION

SECTION 01 2900 - APPLICATIONS FOR PAYMENT

PART 1 - GENERAL

1.01 DESCRIPTION

- A. General
 - 1. Furnish all labor, materials, tools, equipment and services for applications for payment as indicated, in accord with provisions of Contract Documents.
 - 2. Completely coordinate with work of all other trades.
 - 3. Although such work is not specifically indicated, furnish and install all supplementary or miscellaneous items, appurtenances and devices incidental to or necessary for a sound, secure and complete installation.
 - 4. See General Conditions and Supplementary Conditions for additional general requirements.

1.02 SUBMITTALS

- A. Project data
 - 1. Submittals: Prior to first application for payment.
 - a. Schedule of Values.
 - b. Application for Payment.
 - Submittals: Monthly.
 - a. Application for Payment.

PART 2 - PRODUCTS - NOT USED

2.

PART 3 - EXECUTION

3.01 GENERAL

- Within three (3) days of the first day of each month, General Contractor shall submit to Architect, for transmittal to Owner, itemized Application for Payment for work completed during previous calendar month, with a "three-week look ahead" schedule of work to be completed.
- B. Provide supporting data substantiating General Contractor's right to payment as Owner may require.

- C. Submit Applications for Payment on AIA Documents G702-1992, Application and Certificate for Payment, and G703, Continuation Sheet. A copy of the form may be obtained from the Architect.
 - 1. Provide one (1) digital copy to the Architect.
 - 2. Signed by duly authorized agent of General Contractor.
 - 3. Application for Payment shall show entire value of work installed, materials and equipment suitably stored at site, and materials and equipment suitably stored off site in insured or bonded warehouse, when approved in advance by Owner.
 - 4. Itemize Applications for Payment:
 - a. Work in place to date.
 - b. Materials and equipment stored on site.
 - c. Total amount due to date.
 - d. Retention amount of 10% deducted.

(1). For public works projects, the retention is limited to 5%.

- e. Amount of previous application.
- f. Amount due for this period.
- Provide signed "Conditional Lien Release" for each itemized amount requested for payment. The "Conditional Lien Release" shall be for the amount requested.
- Along with first Application for Payment, Contractor shall obtain and submit, one
 (1) digital copy Consent of Surety to Reduction in or Partial Release of Retainage, AIA G707A-1994 (sample attached at the end of this section).

3.02 SCHEDULE OF VALUES

Α

5.

- Subdivide the Schedule of Values items into defined areas of the building; the value of said subdivisions shall be mutually agreeable by the General Contractor, the Owner and Architect.
- B. Bond cost, when a part of contract amount, will be paid with 1st payment. Overhead and profit shall be distributed into each Schedule of Values item in proportion to the value of said item to the total value of the contract.

C. Where the Schedule of Values items are separated into a Labor Amount and a Material Amount, payments shall be made for materials delivered and suitably stored. Where the Schedule of Values item is not separated into a Labor Amount and a Material Amount, payments shall be made for materials upon installation. The Labor Amount shall include all estimated on-site installation costs (including labor, applicable taxes, insurance, fringe benefits, erection equipment, tools, and overhead/profit). The Material Amount shall include all estimated material and manufactured equipment costs (including delivery costs, taxes, insurance and overhead/profit.).

3.04 PROGRESS PAYMENTS

4.

5.

A. Owner will, within 15 days after receipt of Application for Payment, either make payment to General Contractor, for such amount Owner determines is properly due, or notify General Contractor of reasons for withholding payment.

3.05 FINAL COMPLETION AND FINAL PAYMENT

- A. Final payment constituting entire unpaid balance of Contract amount will be paid by Owner to General Contractor within 30 days after final Certificate for Payment has been issued by Architect, and the following have been completed: (See Section 01 7700 - Project Closeout).
 - 1. A complete Set of Record Drawings have been completed and submitted to the Architect.
 - 2. All guarantees and warrantees have been completed and submitted to the Architect.
 - 3. All Operations and Maintenance manuals have been bound in a binder and submitted to the Architect.
 - The Contractor has completed AIA Form G706-1994, Contractor's Affidavit of Payment of Debts and Claims and AIA Form G706A-1994, Contractor's Affidavit of Release of Liens, and submitted to the Architect (samples attached at the end of this section).
 - The Contractor has obtained Consent of Surety Company to Final Payment, AIA G707-1994 (sample attached at the end of this section).

END OF DOCUMENT

SECTION 01 2910 - PAYMENT FOR DELIVERED MATERIALS AND EQUIPMENT

PART 1 - GENERAL - NOT USED

PART 2 - PRODUCTS - NOT USED

5.

6.

PART 3 - EXECUTION

3.01 PAYMENT FOR DELIVERED MATERIALS AND EQUIPMENT

- A. Owner may make payments to General Contractor for materials and equipment ready, but not yet incorporated in the Work, delivered and suitably stored at site or another location approved in writing by Owner.
 - 1. For purpose of above paragraph, "materials and equipment" eligible for payment are defined as finished goods made specifically for subject job and requiring extensive time to be manufactured or obtained. Raw materials or work-in-progress at manufacturer's plant are not eligible for payment. Items such as tubing, conduit, pipe, drywall, etc., and items which are readily available for purchase will not be considered eligible.
- B. Payment by Owner for such materials and equipment not yet incorporated in the Work will be made provided the following is accomplished:
 - 1. Items must be listed separately on Application for Payment.
 - 2. Provide receipted invoices as evidence that General Contractor is unconditional owner of equipment or material with Application for Payment.
 - 3. Execute transfer of title, attached, with each request.
 - 4. Describe method used to store off-site items.
 - Identify items in storage as property of Owner, and furnish description of identification method.
 - Provide written inventory, including General Contractor certification that all quantities have been received in good condition.
 - 7. Owner must approve location of off-site storage, in writing.
 - 8. Secure proof of insurance in Owner's name, at no additional cost to Owner.
 - 9. Satisfactory proof of adequate transportation of items to site.

- C. Owner retains right to verify storage by physical inspection prior to invoice approval and at any item thereafter. Such payment does not relieve responsibility for protecting, safeguarding, transporting and proper installation of equipment or materials. Warranty and guarantee period does not commence until installation and substantial completion of work.
- D. Payment will be treated same as "work-in-place" with payment due upon evidence of delivery to job site (or other location acceptable to Owner except that these payments will not be included in value of work in place for payment of labor and mark-up. Each subsequent invoice will restate prior month's materials and equipment not incorporated in the work and current month addition and deletions for materials and equipment incorporated into the Work.
- E. Upon making of partial payments by Owner, all materials and equipment covered thereby becomes sole property of Owner. Partial payments, however, does not constitute acceptance of work by Owner, nor are they to be construed as waiver of any right or claim by Owner.

END OF SECTION

TRANSFER OF TITLE

Date

KNOW ALL MEN BY THESE PRESENTS, THAT ____

in consideration of

(General Contractor)

paid by _____, the receipt of which is hereby acknowledged, does hereby grant, sell, transfer and deliver unto ______ the following goods and chattels, namely:

(Description of Material)

being materials manufactured especially for Colorado River Station under construction at 1111 Bailey Avenue, Needles, California.

TO HAVE AND TO HOLD all and singular the said goods and chattels to the said SunLine Transit Agency, its successors and assigns to their own use, forever.

AND we hereby convenant with the grantee that we are the lawful owner of said goods and chattels; that they are free from all encumbrances, security agreements, mortgages, or other liens; that we will warrant and defend same against claims and demands of all persons.

WE ALSO AGREE that SunLine Transit Agency shall have access to said goods at any time and that goods are covered by Certificate of Insurance attached hereto.

IN WITNESS hereof we, the said		have executed
	(General Contractor)	
this instrument this day of _	in the year two	thousand and
twenty		

Signed in the presence of:

(Firm Name)

(Firm Name)

(General Contractor)

(Subcontractor or Supplier)

SECTION 01 3100 - PROGRESS REPORTS

PART 1 - GENERAL

1.01 DESCRIPTION

- A. Project Data:
 - 1. Progress Report.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

- 3.01 GENERAL
 - A. Each subcontractor shall prepare a comprehensive daily log and maintain it during entire project period.
 - B. Each subcontractor shall present a copy of the daily log to General Contractor for compilation into weekly Progress Reports.
 - C. General Contractor shall present copies of Progress Reports with Application for Payment.
 - D. Progress reports to include the following data for each day of entire project period.
 - 1. Manpower, by trade.
 - 2. Work being performed, with location.
 - 3. Weather.

4.

F

- Situations or circumstances which could delay work or give cause for claims for extension of time or added cost.
- 5. List of visitor's names, to include officials, Owner's representatives, and other authorities. Record their observations.
- 6. Other information as required by AHJ project inspector.
- Progress reports to include progress photographs.
- 1. Minimum of twelve (12) color digital photographs taken from different viewpoints of interest to current progress. Photographs shall be emailed to the Architect.

2. Identify all photographs with project name, date, and view or vantage point.

END (OF S	ECTI	ON
-------	------	------	----

SECTION 01 3200 - CONSTRUCTION SCHEDULES

PART 1 - GENERAL

1.01 DESCRIPTION

- A. Immediately after Contract award, prepare and submit progress schedule of work consistent with Contract Documents as herein specified.
- B. Coordinate Subcontractors schedules for entire project.
 - 1. Resolve conflicts among schedules of Subcontractors.
 - 2. Revise as required by conditions and progress of work.
 - 3. Furnish copy of schedule for entire project to each Subcontractor.

1.02 SUBMITTALS (SEE SECTION 01 3300)

- A. Initial construction schedule to Owner and Architect prior to start of work, but not later than date set for preconstruction conference.
- B. Updated schedules accurately depicting progress to last day of each month accompanied with each Application for Payment.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.01 FORM OF SCHEDULES

1.

2.

- A. Prepare in form of horizontal bar chart.
 - Provide separate horizontal bar column of each operation.
 - Order: Table of contents from Project Manual or Chronological order of beginning and completion of each item of work, whichever is most applicable.
 - Identify each column:
 - a. By major specification section number.
 - b. By distinct graphic delineation.
 - 4. Horizontal time scale: Identify first week day of each week.
 - 5. Scale and spacing: To allow space for updating.

B. Sheet size: Maximum 11" x 17".

3.02 CONTENTS OF SCHEDULES

- A. Provide complete sequence of construction by activity.
 - 1. Shop drawings, product data and samples:
 - a. Submittal dates.
 - b. Dates reviewed copies will be required.
 - 2. Decision dates for:
 - a. Products specified by allowances.
 - b. Selection of finishes.
 - 3. Product procurement and delivery dates.
 - 4. Dates for beginning, and completion of each element of construction.
- B. Identify work of separate floors, or separate phases, or other logically grouped activities.
- C. Show projected percentage of completion for each item of work as of last day of every month.
- D. Provide separate subschedule showing submittals, review times, procurement schedules, and delivery dates.
- E. Provide subschedule to define critical portions of entire schedule.

3.03 UPDATING

- A. Show all changes occurring since previous submission of updated schedules.
- B. Indicate progress of each activity, show completion dates.
- C. Include:
 - 1. Major changes in scope.
 - 2. Activities modified since previous updating.
 - 3. Review projections due to changes.
- D. Provide narrative report including:

- 1. Discussion of problem areas including current and anticipated delay factors and their impact.
- 2. Corrective action taken or proposed and its effect.
- 3. Effect of change in schedule of subcontractors.
- 4. Description of revisions.
 - a. Effect on schedule due to change of scope.
 - b. Revisions in duration of activities.
 - c. Other changes that may affect schedule.

3.04 DISTRIBUTION

- A. Distribute copies of revised schedules to:
 - 1. Owner.
 - 2. Architect.
 - 3. Subcontractors.
 - 4. Job site file.
 - 5. On site AHJ job inspector.
 - 6. Other concerned parties.
- B. Instruct recipients to report any inability to comply and provide detailed explanation, with suggested remedies.

END OF SECTION

SECTION 01 3300 - SHOP DRAWINGS, PRODUCT DATA, SAMPLES AND PROJECT DATA

PART 1 - GENERAL

1.01 DESCRIPTION

- A. General:
 - 1. Furnish all labor, materials, tools, equipment, and services for furnishing, processing, delivery, reproduction and other functions for scheduling and handling of shop drawings, product data, samples and project data as indicated, in accord with provisions of Contract Documents.
 - 2. Completely coordinate with work of all other trades.
 - 3. Although such work is not specifically indicated, furnish and install all supplementary or miscellaneous items, appurtenances and devices incidental to or necessary for a sound, secure and complete installation.
 - 4. See Division 1 for General Requirements.
- B. See General Conditions for additional requirements.
- C. See technical sections for data required.

1.02 DEFINITIONS

A. "Base" manufacturer: Manufacturer listed as manufacturer in Part 2 "Products", of specification section, unless specifically indicated as "optional" manufacturer. More than one manufacturer can be "base" manufacturer. Base manufacturer(s) are either: The particular manufacturer the project was designed around or a manufacturer of an identical product. It does not include manufacturers listed as "optional manufacturers" in Part 2 of specification section.

1.03 SHOP DRAWINGS, PRODUCT DATA, SAMPLES AND PROJECT DATA GENERAL

A. Submit all items to General Contractor for transmittal to:

Marks Architects, Inc. 73121 Fred Waring Drive, Suite 200 Palm Desert, CA 92260 Attn: David W. Clarke, CA Lic. C21219 david@marksarchitects.com

- B. Contractor is responsible for making all submissions.
 - 1. Submit to address indicated.

- 2. <u>Transmit all items with Marks Architects transmittal form (see enclosed)</u>.
- Identify each transmittal using applicable 6 digit specification section number with a dash and an added number, i.e., metal handrails might be numbered 05 5000 -1. If returned for re-submission, second submission would be 05 5000-1A.
- C. Provide all information required for complete review of each item in one submittal.
- D. Make submittals sufficiently in advance of date required to allow Architect reasonable time for review and re-submission if necessary.
 - 1. Items not submitted in accord with provisions of this section will be returned, without action, for re-submission.
 - 2. Submissions on items not approved for use by specifications, addenda, or change order will be rejected.

1.04 SHOP DRAWINGS AND PRODUCT DATA SUBMITTALS

2.

- A. Shop drawings and product data submittals are required as called for by submittal paragraph of specification section.
- B. Identify drawings with manufacturer, item, use, type, project designation, specification section or drawing detail reference.
- C. Submit (1) one electronic copy in PDF format of each shop drawing until review is complete.
 - 1. Submit electronic drawings in PDF format to scale not larger than 24" x 36".
 - 2. Allow clear space, approximately 20 sq. inches, for stamping on right hand side.
- D. Submit (1) one electronic copy in PDF format of standard items such as equipment brochures, cuts of fixtures, or standard catalog items.
 - 1. Indicate exact item or model and all proposed options.
 - Include scale details, sizes, dimensions, performance characteristics, capacities, wiring diagrams, controls and other pertinent data.

1.05 SAMPLE SUBMITTALS

- A. Identify samples with manufacturer's name, item, use, type, project designation, specification section or drawing detail reference, color, range, texture, finish and other pertinent data.
- B. Submit (3) three samples to Architect at Architect's office address indicated, or construction site at job meeting. For on-site mock-ups or large wall samples, only one sample is required.
 - 1. Include one (1) electronic copy in PDF format of brochures, shop drawings, and installation instructions, if required, with transmittal.
 - 2. Submit transmittal for site-built samples to address indicated.
- C. Architect shall retain one (1) set of samples for comparison purposes until completion of work.
 - 1. Samples will be returned or may be used in the work unless technical section specifically indicated otherwise.
 - 2. Remove samples when directed.
 - 3. Pay all costs of furnishing, construction, and removing samples.

1.06 PROJECT DATA SUBMITTALS

- A. Submit (1) one electronic copy in PDF format of project data as indicated in individual sections.
- B. If submittal does not comply with Contract Documents, Architect will so inform the Contractor. Contractor will resubmit until no further objection is made.
- C. Use of transmittal form required (see enclosed).

1.07 CONTRACTOR ACTION: SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

- A. Review, approve and stamp all items prior to submission to Architect.
- B. Stamp must indicate that Contractor has:
 - 1. Verified all field dimensions and quantities.
 - 2. Verified all field construction criteria, materials, catalog numbers and similar data.
 - 3. Reviewed and coordinated all submittal data with requirements of the Work and Contract Documents.

- 4. Certified that submittals comply with Contract Documents.
- C. Reproduce and distribute submittals receiving "No Exceptions Taken" or "Make Corrections Noted" stamp.
 - 1. Architect shall distribute copies to Owner and Architect's Consultants.
- D. Resubmit items stamped "Revise and Resubmit", "Submit Specified Item", or "Rejected".
 - 1. Add letter suffix to previous transmittal number, to indicate re-submission.

1.08 SUBMITTALS

- A. Project data: Submit prior to first application for payment:
 - 1. Product list.
 - 2. Schedule of submittals.

1.09 PRODUCT LIST

- A. Complete list of products and subcontractors proposed for use.
- B. Only products and manufacturers which have been specified or approved by addendum may be used.
- C. Partial payment request will not be processed until satisfactory product list has been received.
- D. Format for product list:
 - 1. **Specification** section.
 - 2. Product.
 - 3. Manufacturer.
 - 4. Subcontractor.

1.10 SCHEDULE OF SUBMITTALS

A. The Contractor shall prepare a "Schedule of Submittals" and verify that all submittal requirements required in these specifications are available and notify the Architect of any discrepancies. The "Schedule of Submittals" shall be used as a checklist of required shop drawings, product data, samples and project data, and shall not relieve the Contractor of his responsibility to provide shop drawings or other submittals that are not listed in the Schedule.

B. Schedule all submittals requiring Architect approval during first quarter of construction period.

1.11 ARCHITECT APPROVAL: SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

- A. Approval is only for conformance with the design concept of the project and compliance with the intent of the information given in the Contract Documents. Contractor is responsible for dimensions to be confirmed and correlated at the job site; for information that pertains solely to the fabrication processes or to techniques of construction; and for coordination of the work of all trades.
- B. Approved samples, submitted or constructed, constitute criterion for judging completed work. Work or items not equal to samples will be rejected.
- C. Start of work (which requires submittals) prior to return of submittals, with Architect's stamp indicating approval, is at Contractor's risk.

END OF SECTION

SUBMITTAL TRANSMITTAL FORM

Specification Section: Sequence Number: Re-submittal Letter:

Routing	Checked	Date	Date	No.	
Sequence	Ву	Rec'd	Sent	Copies	Comments
GENERAL CONTRACTOR					
ARCHITECT					
Marks Architects, Inc. 73121 Fred Waring Drive Suite 200 Palm Desert, CA 92260 Attn: David W. Clarke	David W. Clarke				
CONTRACTOR / VENDOR / IOR Attn:					
OWNER Attn:					
SHOP DRAWINGS	DESCRI	PTION	MANUFA	CTURER	ACTION

Action Legend:

Remarks:

- No Exceptions Taken
- B. Revise and Resubmit
- C. Rejected

Α.

- D. Incorporate Corrections Noted and Return Corrected Copy to Architect
- E. Submit Specified Items
- F. Resubmittal Not Required

SHOP DRAWINGS, PRODUCT DATA, SAMPLES AND PROJECT DATA 01 3300 - 6

SCHEDULE OF SUBMITTALS

SECTION	DESCRIPTION	MANUALS	SUBMITTALS	SAMPLES	SHOP DRAWINGS
	KEYN	DTES			

SECTION 01 3400 - COORDINATION DRAWINGS

PART 1 - GENERAL

1.01 DESCRIPTION

- A. General
 - 1. Furnish all labor, materials, tools, equipment and services for all coordination drawings as indicated, in accord with provisions of Contract Documents.
 - 2. Completely coordinate with work of all other trades.
 - 3. Although such work is not specifically indicated, furnish and install all supplementary or miscellaneous items, appurtenances and devices incidental to or necessary for a sound, secure and complete installation.
 - 4. See Division 1 for General Requirements.
- B. Coordination drawings: Overlay drawings showing all work in and above ceilings and in mechanical rooms with horizontal and vertical dimensions, to avoid interference with structural framing, ceilings, partitions and other services.
- C. Prior to start of work in any given area, each Subcontractor shall approve, in writing, all coordination drawings affecting his work in that area.
- D. Any relocations required as result of failure to resolve interferences, provide correct coordination drawings, or call attention to changes required in other work that result of modifications to Contract shall be paid for by responsible Subcontractor.

1.02 PRODUCTION OF COORDINATION DRAWINGS

- A. General Contractor shall provide background drawings, showing partitions, ceiling heights, and structural framing locations and elevations, and existing obstructions. Drawing copies may be obtained from Architect.
- B. Coordination meetings shall be scheduled by General Contractor. Resolve major interferences at initial coordination meeting prior to production of any drawings. Meet as required to resolve interferences and correct coordination drawings during the course of construction.
- C. Produce all initial coordination drawings within 15 days after initial meeting.
San Bernardino County The Hospitality Lane Professional Center 412 West Hospitality Lane, San Bernardino, CA 92408. Project No. 23008184.00

1.03 AFTER APPROVAL

- A. After Subcontractors' written approval of coordination drawings, method used to resolve interferences not previously identified shall be determined by General Contractor.
- B. All changes to approved coordination drawings shall be approved in writing by General Contractor prior to start of work in affected area.

1.04 PRECEDENCE OF SERVICES

- A. In event of conflicts involving location and layout of the work following priority will be used to resolve disputes. Structure has highest priority:
 - 1. Structure.
 - 2. Ceiling grid/tile/light fixtures.
 - 3. Gravity drainage lines.
 - 4. Large pipe mains/pneumatic conveyor.
 - 5. Pneumatic tube.
 - 6. Ductwork/diffusers, registers and grilles.
 - 7. Sprinkler heads.
 - 8. Small piping and tubing/electrical conduit.
 - 9. Access panels.

1.05 SUBMITTALS (SECTION 01 3300)

Project data:

Α.

- 1. One (1) electronic copy of contractor approved drawings to Architect for review and comment, prior to start of work.
 - Architect and his Consultants shall review and may provide comments on submittals.

PART 2 - PRODUCTS - NOT USED

2.

PART 3 - EXECUTION - NOT USED

END OF SECTION

San Bernardino County The Hospitality Lane Professional Center 412 West Hospitality Lane, San Bernardino, CA 92408. Project No. 23008184.00

SECTION 01 4000 - GENERAL TESTING PROCEDURES

PART 1 - GENERAL

1.01 DESCRIPTION

- A. General:
 - 1. Furnish all labor, materials, tools, equipment and services for quality control as indicated, in accord with provisions of Contract Documents.
 - 2. Completely coordinate with work of all other trades.
 - 3. Although such work is not specifically indicated, furnish and install all supplementary or miscellaneous items, appurtenances and devices incidental to or necessary for a sound, secure and complete installation.
 - 4. See Division 1 for General Requirements.
- B. See General Conditions for inspection and testing required by the Owner.
- C. Owner will arrange and pay for certain testing and inspections indicated; Contractor shall pay for all other testing and inspection, including:
 - 1. Re-testing of Owner provided tests due to failure.
 - Concrete testing for qualification of materials and for Contractor's convenience: Section 03 0000.
 - 3. Contractor's duties for Owner provided tests, as specified.

1.02 QUALITY ASSURANCE

1.

Α.

- Test and inspection method standards: See technical sections.
- B. Qualifications of independent testing agencies:

Standards.

- Meet American Council of Independent Laboratories, "Recommended Requirements of Independent Laboratory Qualification", latest edition.
- Meet requirements of ASTM E329, "Standards of Recommended Practice for Inspection and Testing Agencies for Concrete and Steel as used in Construction", latest edition.
 Satisfy inspection criteria of Materials Reference Laboratory of National Bureau of
- 4. See technical sections for additional requirements.

- 5. For each independent testing agency submit:
 - a. Report of Materials Reference Laboratory most recent inspection, with memorandum of remedies of any deficiencies reported.
 - b. Certificate of equipment calibration.
- C. Testing equipment calibration: By accredited calibration agency, at 12 month intervals, maximum, by devices of accuracy traceable to either:
 - 1. National Bureau of Standards.
 - 2. Accepted values of natural physical constants.

1.03 JOB CONDITIONS

A. Employment of independent testing agency by Owner does not relieve obligation of Contractor to comply with Contract Documents.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.01 PERFORMANCE

- A. Perform indicated inspection, sampling and testing of materials and methods of construction.
- B. Use test/inspection/sampling methods conforming with methods indicated.
- C. Report each test/inspection/sampling as indicated.
 - 1. Report results called for by test method, in form specified.
- D. Retest failed products and systems.

3.02 REPORTS

- A. Submit copies of the reports promptly by email to the following:
 - 1. Architect: Marks Architects, Inc.
 - 2. Authority Having Jurisdiction: City of Needles; San Bernardino County
 - 3. General Contractor:
 - 4. Structural Engineer (when applicable): Tang Structural Engineers, Inc.