February 21, 2019

STRUCTURAL DESIGN CALCULATIONS

TI-2019-00049

Arrowhead Regional Medical Center Ambulatory Clinic
Spire Job \#: 19SHA11
400 North Pepper Avenue Colton, CA 92324

County of San Bernardino BUILDING AND SAFETY

THESE PLANS AND DETAILS ARE
APPROVED
THE APPROVAL OF THESE PLANS SHALL NOT BE CONSTRUED TO BE A PERMIT FOR ANY VIOLATION OF ANY CODE OR ORDINANCE OF THIS COUNTY
By \qquad Date

THESE PLANS SHALL BE ON THE JOB FOR ALL REQUESTED INSPECTIONS

Project Description:

Provide structural engineering services for the anchorage of miscellaneous equipment on the 2 nd Floor of an existing 3 -story building.

Digitally signed by Eric Rodriguez, SE DN: cn=Eric Rodriguez, SE, o=NV5, Inc., ou=Energy, email=eric
rodriguez@nv5.com,
$\mathrm{c}=\mathrm{US}$
Reason: Reviewed for Code Compliance
Date: 2019.06.12
09:20:55-07'00'
02.21 .19

Table of Contents

General:Sheet
1
Table of Contents
2
USGS Design Maps Summary Report
3
Non-Structural Component Seismic Design - Height Ratio (z/h) 4
Equipment Anchorage:
Suspended Ceiling Equipment - Single Procedure Light 5-6
Wall Mounted Monitor - 29" TV on Peerless Bracket SA730P 7-8
Wall Mounted Monitor - 40" TV on Peerless Bracket AT640 9-10
Floor Mounted Equipment - Refrigerator (GE) 11-12
Floor Mounted Equipment - Warming Cabinet (Steris) 13-14
Wall Mounted Monitor - TV on Ergotron Bracket 15-16
Suspended Ceiling Equipment - EF-1 \& RF-1 17-18
Typical Suspended Single Pipe and Conduit Support 1
Typical Suspended Pipe and Conduit Trapeze Support 20
Typical Wall-Mounted Pipe and Conduit Support 21-22
Typical Wall-Mounted Equipment Anchorage 23-24
Typical Unistrut Wall-Mounted Equipment Anchorage 25-26
Appendix A: EASE Calcs (Reference Equipment Info) A1-A15

Sheet:

Job:	18SHA11 ARMC Ambulatory Clinic		2	
Calc By:	ISG	Date:		

Arrowhead Regional Ambulatory Clinic 400 N Pepper Ave, Colton, CA 92324, USA

Latitude, Longitude: 34.0740531, -117.35105900000002

Sheet:

Job:	18SHA11 ARMC Ambulatory Clinic		3
Calc By:	ISG	Date:	

Non-Structural Component Seismic Design - Height Ratio (z/h)

$\mathrm{n}_{\text {top }}=$	3
Level $_{1}=$	2nd Floor
Level $_{0}=$	1st Floor
Bsmt. =	No
Floor $=$	2nd Floor
Susp. =	Yes
Roof $=$	No

Top floor number
First level above grade floor name?
Ground level floor name?
Basement?
What floor is the project on?
Suspended equipment?
Rooftop equipment?

Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)

Normal or lightweight concrete	
	Concrete over metal deck?
Concrete compressive strength	
Hilti KB-TZ anchor	
Carbon steel or Stainless steel	
Anchor O.D.	
Effective min anchor embedment Concrete thickness	
Min member thickness	
Seismic reduction per ACl Ch. 17	
LWC reduction per ACI Ch. 17	
Effectiveness factor	
Coefficient for pryout strength	
Adjusted by ($\left.\mathrm{f}_{\mathrm{c}} / 2500\right)^{0.5}$	
Adjusted by ($\left.\mathrm{f}_{\mathrm{c}} / 2500\right)^{0.5}$	
$=\mathrm{k}_{\text {cr }}\left(\mathrm{f}_{\mathrm{\prime}} \mathrm{c}\right)^{0.5} \cdot \mathrm{hef}^{1.5}$	
Min anchor spacing	
Min. edge distance	
$=3 h_{\text {ef }} \cdot\left(\min \left(1.5 \mathrm{~h}_{\text {ef }}, \mathrm{S} / 2\right)+\min \left(1.5 \mathrm{~h}_{\text {ef }}, \mathrm{C}\right)\right)$	
$=9 \cdot h_{\text {ef }}{ }^{2}$	
Steel strength in tension	
Steel strength in shear$=\phi_{s} \lambda \phi_{t, \text { conc }} \cdot \min \left(N_{p, e q}, N_{p, c r}, N_{b}\right) \cdot\left(A_{n} / A_{n o}\right)$	
$=\lambda \phi_{v, \text { conc }} \cdot \mathrm{k}_{\text {cp }} \cdot \mathrm{N}_{\mathrm{b}} \cdot\left(\mathrm{A}_{\mathrm{n}} / \mathrm{A}_{\mathrm{no}}\right)$	
$=\phi_{\text {t,steel }} \cdot N_{\text {sa }}$	
$=\phi_{\mathrm{v}, \text { steel }} \cdot \mathrm{V}_{\mathrm{sa}}$	

Job:	18SHA11 ARMC Ambulatory Clinic		5
Calc By:	ISG	Date:	

DETAIL

Suspended Ceiling Equipment - Single Procedure Light	1/S301

ASCE 7 Table 13.5-1
ASCE 7 Table 13.5-1
ASCE 7 Table 13.5-1

$$
\mathrm{z}=\text { height of attachment, } \mathrm{h}=\text { roof height } \quad \mathrm{F}_{\mathrm{ph}}=\frac{0.4 \mathrm{~S}_{\mathrm{DS}} \mathrm{a}_{\mathrm{p}}}{\left(R_{\mathrm{p}} / \mathrm{l}_{\mathrm{p}}\right)}\left(1+2 \frac{\mathrm{z}}{\mathrm{~h}}\right) \mathrm{W}_{\mathrm{p}}
$$

Equip weight
Vert. dist. to centroid Horiz. dist. to centroid Vert. hgr. spacing Diag. dist. btwn hgrs Number of hgrs Length of bolt Bolt circle diameter $\mathrm{I}_{\mathrm{xx}}=\mathrm{n}_{\mathrm{RODS}}(\mathrm{D} / 2)^{2}$
$\mathrm{I}_{\mathrm{yy}}=\mathrm{n}_{\mathrm{RODS}}(\mathrm{D} / 2)^{2}$
$y_{z z}=I_{x x}+I_{y y}$
Lateral seismic force (ult)

$\mathrm{M}_{\mathrm{yy}}=0.7 \mathrm{~F}_{\mathrm{ph}}\left(\mathrm{CG}+\mathrm{L}_{\text {bolt }}\right)+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \mathrm{B}$ Rod diameter

$$
\begin{aligned}
\mathrm{F}_{\mathrm{pv}} & =0.02 \mathrm{~W}_{\mathrm{p}(\text { utt })} \\
\mathrm{F}_{\mathrm{ph}(\mathrm{M} I \mathrm{~N})}= & =0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{~W}_{\mathrm{p}} \\
0.41 \mathrm{~W}_{\mathrm{p}(\text { uut) })} & =0.3 \mathrm{~S}_{\mathrm{DS}} \cdot \mathrm{I}_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}}
\end{aligned}
$$

Vertical seismic force (ult)

Spacing of stiffener cradle clips
Percentage of tensile capacity for compression

Rod Compression
Rod Compressive Capacity

$$
\mathrm{C}=\frac{\left(0.7 \mathrm{~F}_{\mathrm{pv}}-0.9 \mathrm{~W}_{\mathrm{p}}\right)}{\mathrm{n}_{\mathrm{RoDs}}}+\frac{\mathrm{M}_{\mathrm{yy}}(\mathrm{D} / 2)}{\mathrm{y}_{\mathrm{yyRoDs}}}-\frac{0.7 \mathrm{~F}_{\mathrm{ph}}}{2}
$$

Vertical Hanger Anchorage (Hilti KB-TZ, ICC ESR-1917)

$\mathrm{M}_{\mathrm{uyy}}=\Omega_{\mathrm{o}} \cdot \mathrm{F}_{\mathrm{ph}}\left(\mathrm{CG}+\mathrm{L}_{\text {bolt }}\right)+\left(1.2 \mathrm{~W}_{\mathrm{p}}+\mathrm{F}_{\mathrm{pv}}\right) \mathrm{B}$
Seismic reduction per ACI Ch. 17
Concrete thickness
Concrete strength (2,500 psi min)

Reduction for LWC
Carbon or stainless
Anchor diameter

$\phi_{\mathrm{t}, \text { conc }}$	$=$	0.65
$\phi_{\mathrm{v}, \text { conc }}$	$=$	0.70
$\phi_{\mathrm{t} \text {,stel }}$	$=$	0.75
$\phi_{\mathrm{v}, \text { steel }}$	$=$	0.65

Effective embedment
Minimum concrete thickness
Anchor spacing
Minimum anchor spacing
$\begin{aligned}=9 \cdot h_{e f}^{2} \quad A_{n}= & \underset{\text { (assuming no close edges) }}{\left.\min \left(3 \cdot h_{e f}\right)\left(1.5 \cdot h_{\text {ef }}+s / 2\right), A_{n o}\right]}\end{aligned}$
Anchor effective area
Anchor tensile strength

Concrete breakout strength
Tension Demand
$=0.75 \cdot \lambda \phi_{\mathrm{t}, \text { conc }} \cdot \min \left(\mathrm{N}_{\mathrm{b}}, \mathrm{N}_{\mathrm{p}, \mathrm{cr}}\right)\left(\mathrm{A}_{\mathrm{n}} / \mathrm{A}_{\mathrm{no}}\right)$
$=\phi_{\mathrm{t}, \text { steel }} \cdot \mathrm{A}_{\mathrm{se}} \cdot \mathrm{f}_{\mathrm{u}}$
$=\Omega_{0} P_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { conc }}$
$=\Omega_{0} P_{u} / \phi P_{n, \text { steel }}$

Job:	18SHA11 ARMC Ambulatory Clinic		6	
Calc By:	ISG	Date:		

DETAIL

Suspended Ceiling Equipment - Single Procedure Light

Bracing Design (Unistrut P1000, Lmax $=9^{\prime}-6 ", r m i n=0.577, K L / r=198$, load applied at slotted face, 4 total)

$M_{z z}=0.7 \cdot F_{\mathrm{ph}} \cdot B \quad C=\left(\frac{0.7 \mathrm{~F}_{\mathrm{ph}}}{2}+\frac{M_{z z}(D / 2)}{I_{z z} \text { RoDs }}\right) \sqrt{2}$
Brace compression capacity, based on $10^{\prime}-0^{\prime \prime}$ length

Unistrut Catalog, pg 20
Brace Anchorage (Same anchor parameters as vertical anchor)

Bolt/Rod Design (Between Mounting Plates):

Mounting Plate Design:

Bolt diameter
Number of bolts
Bolt Area
$\mathrm{S}_{\text {BOLT }}=\pi \cdot(\mathrm{d} / 2)^{3} / 4$

Max distance from center of bolt circle - XX axis
Max distance from center of bolt circle - YY axis
$\mathrm{M}_{\mathrm{zz}}=0.7 \cdot \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{B}$
$\begin{aligned} & \mathrm{M}_{\mathrm{yy}}=0.7 \mathrm{~F}_{\mathrm{ph}}\left(\mathrm{CG}+\mathrm{L}_{\text {bott }}\right)+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \mathrm{B} \\ & \mathrm{M}_{\text {BOLT }}=\mathrm{V} \cdot\left(\mathrm{L}_{\text {BOLT }} / 2\right)\end{aligned} \mathrm{V}=\sqrt{\left(\frac{0.7 \cdot \mathrm{~F}_{\mathrm{ph}}}{n_{\mathrm{BOLTS}}}+\frac{\mathrm{M}_{z \mathrm{z}} \mathrm{x}}{\mathrm{I}_{\mathrm{z}, \mathrm{BOLTS}}}\right)^{2}+\left(\frac{\mathrm{M}_{z \mathrm{z}} y}{\mathrm{I}_{\mathrm{zz}, \mathrm{BOLTS}}}\right)^{2}}$
$\mathrm{M}_{\mathrm{BOLT}}=\mathrm{V} \cdot\left(\mathrm{L}_{\text {BOLT }} / 2\right)$
$\mathrm{T}=\left(\mathrm{M}_{\mathrm{yy}} \cdot \mathrm{x}\right) / /_{\mathrm{yy}} \mathrm{BOLTS}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \cdot \mathrm{~F}_{\mathrm{pv}}\right) / n_{\text {bolts }}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{M}_{\text {BOLT }} / \mathrm{S}_{\text {BOLT }}+\mathrm{T}^{2} / \mathrm{A}_{\text {BOLT }}$
$\mathrm{f}_{\mathrm{v}}=\mathrm{V} / \mathrm{A}_{\text {BOLT }}$

$$
\mathrm{F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{n} t} / \Omega \quad \text { (AISC } 13 \text { Ed., Pg. 7-23) }
$$

$F_{v}=F_{n v} / \Omega \quad$ (AISC 13 Ed., Pg. 7-22)
$\mathrm{f}_{\mathrm{t}} / \mathrm{F}_{\mathrm{t}}+\mathrm{f}_{\mathrm{v}} / \mathrm{F}_{\mathrm{v}}<1.0$

Plate thickness
$b=12 t$
$Z=b \cdot t^{2} / 4$

$\mathrm{M}_{\mathrm{yy}}=0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{CG}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{B}$
$\mathrm{T}=\mathrm{M}_{\mathrm{yy}} \cdot\left(\mathrm{BC} \cdot 2^{1 / 2}\right) /\left(2 \cdot \mathrm{I}_{\mathrm{yy}, \mathrm{BOLTs}}\right)+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) / n_{\text {BOLTS }}$
$C=M_{y y} \cdot\left(B C \cdot 2^{1 / 2}\right) /\left(2 \cdot I_{y y}, B O L T S\right)-\left(W_{p}+0.7 F_{p v}\right) / n_{\text {BOLTS }}$
$\mathrm{M}=\mathrm{T} \cdot(\mathrm{D}-\mathrm{BC} / 2)-\mathrm{C} \cdot[(\mathrm{D}-\mathrm{BC}) /(2 \mathrm{D})] \cdot(\mathrm{D}-\mathrm{BC}) / 2$
$M_{n} / \Omega=F_{y} \cdot Z / \Omega \quad F_{y}=36 \mathrm{ksi}$

Job:	18SHA11 ARMC Ambulatory Clinic		7	
Calc By:	ISG	Date:		

Wall Mounted Monitor - 29" TV on Peerless Bracket SA730P

GENERAL INPUT

$\begin{array}{r} \text { Design }= \\ W_{p}= \end{array}$	City	
	29	Lbs (max)
$\mathrm{H}=$	6.5	in (min)
$\mathrm{B}=$	1.6	in (min)
D $=$	23.2	in (max)
	Equip	Wall
$\mathrm{a}_{\mathrm{p}}=$	1.0	1.0
$\mathrm{R}_{\mathrm{p}}=$	1.5	2.5
$\mathrm{S}_{\mathrm{DS}}=$	1.35	
$\mathrm{I}_{\mathrm{p}}=$	1.00	
$\mathrm{z}_{1} / \mathrm{h}=$	0.33	
$z_{2} / \mathrm{h}=$	0.67	

OPM: 0212-13
(ASD)

SEISMIC FORCES

Equip weight (including bracket)
Vert distance between anchors
Distance between anchors and edge of bracket
Distance to centroid

ASCE 7 Tables 13.5-1
and 13.6-1
See USGS sheet
ASCE 7 Table 1.5-2
2nd Floor
3rd Floor

PROFILE

SIDE-TO-SIDE

$\mathrm{V}=$	37
$\mathrm{P}=$	336

\section*{Screws into Backing Plate
 | SMS $=$ | 1/4" ϕ | (min) |
| :---: | :---: | :---: |
| $\mathrm{V}=$ | 18 | Lbs/screw |
| $\mathrm{P}=$ | 336 | Lbs/screw |
| $\mathrm{V}^{\prime}=$ | 613 | Lbs |
| $\mathrm{P}^{\prime}=$ | 261 | Lbs |
| DCR = | 1.32 | (NG) |

A307 Bolts at Bracket to Backing

Metal =	16 ga	backing
$\mathrm{d}=$	1/4	in (min)
$\mathrm{m}_{\mathrm{f}}=$	0.75	
$\mathrm{C}=$	3.0	
$\mathrm{P}=$	168	Lbs/bolt
$\mathrm{V}=$	18	Lbs/bolt
$\mathrm{P}^{\prime}=$	573	Lbs
$\mathrm{V}^{\prime}=$	509	Lbs
DCR $=$	0.33	≤ 1.0 (OK)

$$
F_{p h}=0.7 \frac{0.4 S_{D s} a_{p}}{R_{p} / I_{p}}\left(1+2 \frac{z}{h}\right) \mathrm{W}_{\mathrm{p}}
$$

$$
\mathrm{F}_{\mathrm{pv}}=0.7 \cdot 0.2 \mathrm{~S}_{\mathrm{DS}} \cdot \mathrm{~W}_{\mathrm{p}}
$$

$$
=W_{p}+F_{p v}
$$

$$
=\left[\left(W_{p}+F_{p v}\right) \cdot C G+F_{p h} \cdot(H / 2)\right] / H
$$

$$
\begin{aligned}
& =\left[\left(W_{p}+F_{p v}\right)^{2}+F_{p h}^{2}\right]^{0.5} \\
& =\left[\left(W_{p}+F_{p v}\right) \cdot C G\right] / H+\left(F_{p h} \cdot C G\right) / B
\end{aligned}
$$

PLAN

Shear demand (in-plane)
Pull-out
Screw shear capacity per SSMA allowable loads table, p. 60 Screw pull-out capacity per SSMA allowable loads table, p. 60

$$
\text { DCR = V/V' + P/P' } \leq 1.0
$$

Bolt diameter
Modification factor per AISI Table E3.3.1-2
Bearing factor per AISI Table E3.3.1-1
Pull-out per bolt
Shear per bolt
Bearing capacity (AISI Eqn. E3.3.1-1)
Shear capacity (AISI Eqn. E4.3.1-1)

$$
\begin{aligned}
& =\left[m_{\mathrm{f}} \cdot \mathrm{C} \cdot \mathrm{~d} \cdot \mathrm{t} \cdot \mathrm{~F}_{\mathrm{u}}\right] / \Omega \\
& =\left[4.2\left(\mathrm{t}^{3} \cdot \mathrm{~d}\right)^{1 / 2} \cdot \mathrm{~F}_{\mathrm{u}}\right] / \Omega \\
& =\max \left[\mathrm{P}_{\mathrm{F}-\mathrm{B}} / \mathrm{P}^{\prime},\left(\mathrm{P}_{\mathrm{s}-\mathrm{s}} / \mathrm{P}^{\prime}+1\right.\right.
\end{aligned}
$$

Job:	18SHA11 ARMC Ambulatory Clinic		8	
Calc By:	ISG	Date:		

Wall Mounted Monitor - 29" TV on Peerless Bracket SA730P

Screws into Metal Studs

SMS =	\#10	(min)
$\mathrm{V}=$	3	Lbs
$\mathrm{P}=$	56	Lbs
$\mathrm{V}^{\prime}=$	613	Lbs
$\mathrm{P}^{\prime}=$	261	Lbs
DCR $=$	0.22	(OK)

STUD DESIGN

Shear demand (in-plane)
Pull-out
Screw shear capacity per SSMA allowable loads table, p. 60
Screw pull-out capacity per SSMA allowable loads table, p. 60

Number of studs engaged
Height of stud (maximum)
Unit wt of partition wall
Stud spacing
$=\operatorname{Max}\left[\left(\mathrm{F}_{\mathrm{ph}}\right)\left(\mathrm{W}_{\mathrm{p}, \text { wall }}\right), 5 \mathrm{psf} \mathrm{min}\right]$
$=\mathrm{F}_{\mathrm{ph}} \cdot\left(\mathrm{s}_{\mathrm{stud}} / 12\right)$
Max Moment (per stud)
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\mathrm{F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+\mathrm{F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {s }}^{\text {E K Cull M M MCHENT }}$
$=w_{\text {wall }} \cdot H_{\text {stud }} / 2+F_{p h}+\left(W_{p}+F_{p v}\right) \cdot(D / 12) / H_{\text {stud }}$
(min)
$=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}} / \Omega_{\mathrm{b}}, \Omega_{\mathrm{b}}=1.67$
Maximum Deflection (Limit to L/120)

Stud Wall Top \& Bot Track Connections (ASD)

-Connected to a top and bottom track with 2- \#10 SMS. Loads are minimal therefore ok by isnpection. -See A7/S601 for additional information.

Job:	18SHA11 ARMC Ambulatory Clinic		9
Calc By:	ISG	Date:	

DETAIL

Wall Mounted Monitor - 42" TV on Peerless Bracket ST640

GENERAL INPUT

Design $=$$W_{p}=$			Equip weight (including bracket)
	50	Lbs (max)	
$\mathrm{H}=$	5.0	in (min)	Vert distance between anchors
$\mathrm{B}=$	16.0	in (min)	Horiz distance between anchors
D $=$	6.0	in	Distance to centroid
	Equip	Wall	
$\mathrm{a}_{\mathrm{p}}=$	1.0	1.0	ASCE 7 Tables 13.5-1
$\mathrm{R}_{\mathrm{p}}=$	1.5	2.5	and 13.6-1
$\mathrm{S}_{\mathrm{DS}}=$	1.35		See USGS sheet
$\mathrm{I}_{\mathrm{p}}=$	1.00		ASCE 7 Table 1.5-2
$z_{1} / \mathrm{h}=$	0.33		2nd Floor
$\mathrm{z}_{2} / \mathrm{h}=$	0.67		3rd Floor

SEISMIC FORCES

$\mathrm{F}_{\mathrm{ph}, \text { min }}=$	0.28	W_{p}	
$\mathrm{F}_{\mathrm{ph}, 1}=$	0.42		0.25
$\mathrm{F}_{\mathrm{ph}, 2}=$	0.59		0.35
$\mathrm{F}_{\mathrm{ph}}=$	0.50		0.32
$\mathrm{F}_{\mathrm{pv}}=$	0.19	W_{p}	
$\mathrm{F}_{\mathrm{ph}}=$	25	Ibs	
$\mathrm{F}_{\mathrm{pv}}=$	10	Ibs	

$$
\mathrm{F}_{\mathrm{ph}, \min }=0.7 \cdot 0.3 \mathrm{~S}_{\mathrm{DS}} \cdot I_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}}
$$

OPM: 0211-13
(ASD)

$$
F_{p h}=0.7 \frac{0.4 S_{D s} a_{p}}{R_{p} / I_{p}}\left(1+2 \frac{z}{h}\right) \mathrm{W}_{\mathrm{p}}
$$

$$
\mathrm{F}_{\mathrm{pv}}=0.7 \cdot 0.2 \mathrm{~S}_{\mathrm{DS}} \cdot \mathrm{~W}_{\mathrm{p}}
$$

FRONT-TO-BACK

V $=$	65
$\mathrm{P}=$	81

Screws into Backing Plate

SMS $=$	1/4" ϕ	(min)
$\mathrm{V}=$	16	Lbs/screw
$\mathrm{P}=$	42	Lbs/screw
$\mathrm{V}^{\prime}=$	613	Lbs
$\mathrm{P}^{\prime}=$	261	Lbs
DCR =	0.19	(OK)

SIDE-TO-SIDE

$$
=W_{p}+F_{p v}
$$

$$
=\left[\left(\mathrm{W}_{\mathrm{p}}+\mathrm{F}_{\mathrm{pv}}\right) \cdot C G+\mathrm{F}_{\mathrm{ph}} \cdot(\mathrm{H} / 2)\right] / \mathrm{H}
$$

$$
\begin{aligned}
& =\left[\left(W_{p}+F_{p v}\right)^{2}+F_{p h}^{2}\right]^{0.5} \\
& =\left[\left(W_{p}+F_{p v}\right) \cdot C G\right] / H+\left(F_{p h} \cdot C G\right) / B
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\text {wall }} & = \\
\text { Metal } & =1 \text { No. of screws into backing (min) } \\
& \text { backing }
\end{aligned}
$$

Shear demand (in-plane)
Pull-out
Screw shear capacity per SSMA allowable loads table, p. 60 Screw pull-out capacity per SSMA allowable loads table, p. 60

$$
D C R=V / V^{\prime}+P / P^{\prime} \leq 1.0
$$

$\mathrm{n}_{\text {wall }}$	$=\square$
Metal	$=18$ No. of screws into metal studs
studs (min)	

Shear demand (in-plane)
Pull-out
Screw shear capacity per SSMA allowable loads table, p. 60
Screw pull-out capacity per SSMA allowable loads table, p. 60

Job:	18SHA11 ARMC Ambulatory Clinic		10	
Calc By:	ISG	Date:		

DETAIL

Wall Mounted Monitor - 42" TV on Peerless Bracket ST640

Stud Wall Top \& Bot Track Connections (ASD)
Top Connection: 0.157" ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
Above: NWC o/ Mtl Deck

$\mathrm{s}_{\text {top }}=$	24	in Lbs/anchor Lbs/anchor
$\mathrm{n}_{\text {top }}=$	2	
$\mathrm{V}=$	82	
$V^{\prime}=$	90	

Anchor spacing at top of wall
Total number of anchors engaged at top of wall
$=\mathrm{R}_{\text {TOP }} \cdot\left(\mathrm{n}_{\text {stud }} / \mathrm{n}_{\text {top }}\right)$
Shear capacity (ASD)
Top Connection: Braced

$\mathrm{s}_{\text {top }}$	$=\square 48$
$\mathrm{n}_{\text {braces }}$	$=4 \mathrm{in}$
V	$=4 \mathrm{Lbs} /$ brace

Brace spacing at top of wall
Total number of braces engaged at top of wall
$=\left[\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {partial }} / 2+0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {partial }}\right] \cdot\left(\mathrm{n}_{\text {stud }} / \mathrm{n}_{\text {top }}\right)$

Bottom Connection:		$0.157 " \phi$ Hilti X-U w/ 1" Embed (ICC E	
$\mathrm{s}_{\mathrm{bot}}=$	24	in	Anchors spacing at bo
$\mathrm{n}_{\text {bot }}=$	2		Total number of anc
$V=$	82	Lbs/anchor	$=\mathrm{R}_{\text {BOT }} \cdot\left(\mathrm{n}_{\text {stud }} / \mathrm{n}_{\text {bot }}\right)$
$\mathrm{V}^{\prime}=$	90	Lbs/anchor	Shear capacity (ASD)

Job:	18SHA11 ARMC Ambulatory Clinic		11
Calc By:	ISG	Date:	

Floor Mounted Equipment - Refrigerator (GE)

Design $=$ City		
$\mathrm{a}_{\mathrm{p}}=$	1.0	
$\mathrm{R}_{\mathrm{p}}=$	2.5	
$\Omega_{0}=$	2.5	
$\mathrm{S}_{\mathrm{DS}}=$	1.35	g
$\mathrm{I}_{\mathrm{p}}=$	1.00	
$\mathrm{z} / \mathrm{h}=$	0.33	
Dimensions		
$\mathrm{W}_{\mathrm{p}}=$	800	Lbs*
$B=$	39.0	in
$\mathrm{D}=$	22.0	in (min)
$C G=$	36.0	in
$\mathrm{n}=$	6	(min)
$\mathrm{n}_{\mathrm{t}}=$	3	(min)

ASCE 7 Table 13.5-1 \& Table 13.6-1
ASCE 7 Table 13.5-1 \& Table 13.6-1
ASCE 7 Table 13.5-1 \& Table 13.6-1
See USGS sheet
ASCE 7 Table 11.5-1
2rd Floor

(Governs)

Connection of Angle Brackets to Equipment Frame:

$\begin{aligned} \text { Fastener } & = \\ \mathrm{n}^{\text {a }} & =\end{aligned}$		(min)
	Screw	
	1	
SMS =	1/4" ϕ	
Metal $=$	20 ga	(min)
$t=$	0.0346	in
$\mathrm{F}_{\mathrm{u}}=$	45	ksi
$V_{u, \text { conn }}=$	107	Lbs
$\phi \mathrm{V}_{\mathrm{n}, \mathrm{conn}}=$	305	Lbs
DCR =	0.35	(OK)

Angle Bracket Design

$\mathrm{P}_{\mathrm{u}}=$	0.1	kips
$\mathrm{d}=$	4.0	in (max)
$\mathrm{b}=$	1.5	in
$p=$	3.0	in
$\mathrm{d}_{\text {anchor }}=$	3/8	in
$\mathrm{b}^{\prime}=$	1.13	in
$\mathrm{t}_{\text {min }}=$	0.07	in
$\mathrm{t}=$	1/4	in (min)
$\mathrm{M}_{\mathrm{u}, \text { angle }}=$	0.10	kip-in
$\mathrm{Z}=$	0.047	in^{3}
$\mathrm{F}_{\mathrm{y}}=$	36	ksi
$\phi \mathrm{M}_{\mathrm{n} \text {, angle }}=$	1.52	kip-in
DCR =	0.07	(OK)

Type of fastener (Screw or Bolt)
No. of screws per anchorage point
Size of sheet metal screw
Equipment frame gauge
Equipment frame thickness
Ultimate strength of steel (min)
Shear demand per screw
$\mathrm{V}_{\mathrm{u}, \text { conn }}=\left(\mathrm{P}_{\mathrm{u}}{ }^{2}+\mathrm{V}_{\mathrm{u}}{ }^{2}\right)^{1 / 2} \div \mathrm{n}_{\text {conn }}$
Screw shear capacity (per SSMA p.60, converted to ULT)
$\mathrm{V}_{\mathrm{u}, \text { conn }} / \phi \mathrm{V}_{\mathrm{n}, \text { conn }} \leq 1.0$

Tension per angle
Distance from bottom of angle to SMS conn.
Distance from centerline of anchor to angle leg
Tributary angle width
Anchor diameter
Distance from edge of hole to center of angle leg
Min thickness for no prying action (AISC Section 9-10)
Thickness
Moment demand
Plastic section modulus
Yield stress
Moment capacity
$M_{u \text {,angle }} / \phi M_{n, \text { angle }} \leq 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		12	
Calc By:	ISG	Date:		

Floor Mounted Equipment - Refrigerator (GE)

Hilti KB-TZ Expansion Anchors: (ICC ESR-1917)) Anchor Mark =	1 *
*See "Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)" calculation sheet for additional info.					
Anchor $=$	CS 3/8 (1 1/2)		3/8" ϕ Hilti KB-TZ (Carbon Steel) w/ 1 1/2" Embedment		
	Concrete	Steel			
$\phi \mathrm{P}_{\mathrm{n}}=$	815	4,875	Lbs (C	Concrete tension capac	ity has been multiplied by 0.75 for seismic)
$\phi V_{n}=$	1,383	1,417	Lbs		
$\mathrm{DCR}_{\mathrm{P}}=$	0.44	0.07		$\Omega_{\mathrm{o}} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}} \leq 1.0$	
$D C R$ V $=$	0.10	0.10		$\Omega_{\mathrm{o}} \mathrm{V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}} \leq 1.0$	
$D C R_{P+V}=$	0.27	$\left.\mathrm{R}_{\mathrm{P}, \text { max }}\right)^{5 / 3}$	${ }^{1 / 3}+\left(\mathrm{DCR}_{\mathrm{v}, \max }\right)^{5 / 3}$	${ }^{5 / 3} \leq 1.0$	

Job:	18SHA11 ARMC Ambulatory Clinic		13	
Calc By:	ISG	Date:		

er

Floor Mounted Equipment - Warming Cabinet (Steris)	8/S301

Design $=$ City		
$\mathrm{a}_{\mathrm{p}}=$	1.0	
$\mathrm{R}_{\mathrm{p}}=$	2.5	
$\Omega_{0}=$	2.5	
$\mathrm{S}_{\mathrm{DS}}=$	1.35	g
$\mathrm{I}_{\mathrm{p}}=$	1.00	
$\mathrm{z} / \mathrm{h}=$	0.00	
Dimensions		
$\mathrm{W}_{\mathrm{p}}=$	691	Lbs*
$B=$	33.0	in
$\mathrm{D}=$	20.0	in (min)
$C G=$	37.4	in
$\mathrm{n}=$	6	(min)
$\mathrm{n}_{\mathrm{t}}=$	3	(min)

ASCE 7 Table 13.5-1 \& Table 13.6-1
ASCE 7 Table 13.5-1 \& Table 13.6-1
ASCE 7 Table 13.5-1 \& Table 13.6-1
See USGS sheet
ASCE 7 Table 11.5-1

Equip weight
Dist between anchors (30" $+2 \cdot 1.5$ " $)$
Dist between anchors \& edge of unit (24 " $/ 2+8$ ")
Dist to centroid
No. of anchors
No. of anchors in tension
*Wp includes 158 Lbs of contents
*2 middle anchors count as one anchor

Forces	*Wp includes 158 *2 middle anchor
$\mathrm{F}_{\mathrm{ph}, \text { min }}=$	0.41
$\mathrm{F}_{\mathrm{ph}}=$	0.22
$\mathrm{F}_{\mathrm{ph}}=$	280
$\Omega_{0} \cdot F_{\text {ph }}=$	700
$\mathrm{F}_{\mathrm{pv}}=$	0.27
$\mathrm{F}_{\mathrm{pv}}=$	187
$\mathrm{V}_{\mathrm{u}}=$	47
$\Omega_{0} \cdot V_{u}=$	117
$\mathrm{P}_{\mathrm{u}}=$	102
$\Omega_{0} \cdot \mathrm{P}_{\mathrm{u}}=$	363

(Governs)

Shear per anchor $\quad V_{u}=F_{p h} / n$
Shear per anchor w/ $\Omega_{0} \quad \Omega_{0} \cdot V_{u}=\Omega_{0} \cdot F_{p h} / n$
Tension per anchor $\quad P_{u, 1}=\left(F_{p h} \cdot C G\right) /\left[\min (B, D) \cdot n_{t}\right]-\left(0.9 W_{p}-F_{p v}\right) / n$
Tension per anchor $w / \Omega_{0} \quad \Omega_{0} \cdot P_{u, 1}=\left(\Omega_{0} \cdot F_{p h} \cdot C G\right) /\left[\min (B, D) \cdot n_{t}\right]-\left(0.9 W_{p}-F_{p v}\right) / n$

$$
(\Omega=3.0, \phi=0.5)
$$

Connection of Angle Brackets to Equipment Frame:

Type of fastener (Screw or Bolt)
No. of screws per anchorage point
Size of sheet metal screw
Equipment frame gauge
Equipment frame thickness
Ultimate strength of steel (min)
Shear demand per screw

$$
\mathrm{V}_{\mathrm{u}, \text { conn }}=\left(\mathrm{P}_{\mathrm{u}}^{2}+\mathrm{V}_{\mathrm{u}}^{2}\right)^{1 / 2} \div \mathrm{n}_{\mathrm{conn}}
$$

Screw shear capacity (per SSMA p.60, converted to ULT)
$\mathrm{V}_{\mathrm{u}, \text { conn }} / \phi \mathrm{V}_{\mathrm{n}, \text { conn }} \leq 1.0$
Angle Bracket Design

$\mathrm{P}_{\mathrm{u}}=$	0.1	kips
$\mathrm{d}=$	4.0	in (max)
$\mathrm{b}=$	1.5	in
$\mathrm{p}=$	3.0	in
$\mathrm{d}_{\text {anchor }}=$	3/8	in
$\mathrm{b}^{\prime}=$	1.13	in
$\mathrm{t}_{\text {min }}=$	0.07	in
$t=$	1/4	in (min)
$\mathrm{M}_{\mathrm{u}, \text { angle }}=$	0.11	kip-in
Z =	0.047	in^{3}
$\mathrm{F}_{\mathrm{y}}=$	36	ksi
$\phi \mathrm{M}_{\mathrm{n} \text {, angle }}=$	1.52	kip-in
DCR =	0.08	(OK)

Tension per angle
Distance from bottom of angle to SMS conn.
Distance from centerline of anchor to angle leg
Tributary angle width
Anchor diameter
Distance from edge of hole to center of angle leg
Min thickness for no prying action (AISC Section 9-10)
Thickness
Moment demand
Plastic section modulus
Yield stress
Moment capacity
$M_{u \text {,angle }} / \phi M_{n \text {,angle }} \leq 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		14	
Calc By:	ISG	Date:		

Floor Mounted Equipment - Warming Cabinet (Steris)

Hilti KB-TZ Expansion Anchors: (ICC ESR-1917)) Anchor Mark =	1 *
* See "Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)" calculation sheet for additional info.					
Anchor $=$	CS 3/8 (1 1/2)		3/8" ϕ Hilti KB-TZ (Carbon Steel) w/ 1 1/2" Embedment		
	Concrete	Steel			
$\phi \mathrm{P}_{\mathrm{n}}=$	815	4,875	Lbs (C	Concrete tension capaci	ty has been multiplied by 0.75 for seismic)
$\phi \mathrm{V}_{\mathrm{n}}=$	1,383	1,417	Lbs		
$D C R_{P}=$	0.45	0.07		$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}} \leq 1.0$	
$\mathrm{DCR}_{\mathrm{V}}=$	0.08	0.08		$\Omega_{\mathrm{o}} \mathrm{V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}} \leq 1.0$	
$D C R_{P+V}=$	0.28	$\left.\mathrm{R}_{\mathrm{P}, \text { max }}\right)^{5 / 3}$	$\left(\mathrm{DCR}_{\mathrm{v}, \max }\right)^{5 / 3}$	${ }^{5 / 3} \leq 1.0$	

Job:	18SHA11 ARMC Ambulatory Clinic		15	
Calc By:	ISG	Date:		

DETAIL

Wall Mounted Monitor - TV on Ergotron Bracket

GENERAL INPUT

Design $=$ City			Equip weight (including bracket)
$\mathrm{W}_{\mathrm{p}}=$	34	Lbs (max)	
$\mathrm{H}=$	27.8	in (min)	Vert distance between anchors
$\mathrm{B}=$	7.8	in (min)	Horiz distance between anchors
D $=$	11.9	in (max)	Distance to centroid
	Equip	Wall	
$\mathrm{a}_{\mathrm{p}}=$	1.0	1.0	ASCE 7 Tables 13.5-1
$\mathrm{R}_{\mathrm{p}}=$	2.5	2.5	and 13.6-1
$\mathrm{S}_{\mathrm{DS}}=$	1.35		See USGS sheet
$\mathrm{I}_{\mathrm{p}}=$	1.00		ASCE 7 Table 1.5-2
$\mathrm{z}_{1} / \mathrm{h}=$	0.33		2nd Floor
$\mathrm{z}_{2} / \mathrm{h}=$	0.67		3rd Floor

SEISMIC FORCES

PROFILE

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{ph}, \min }=0.7 \cdot 0.3 \mathrm{~S}_{\mathrm{DS}} \cdot I_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}} \\
& \mathrm{~F}_{\mathrm{ph}}=0.7 \frac{0.4 \mathrm{~S}_{\mathrm{DS}} \mathrm{a}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{p}} / I_{\mathrm{p}}}\left(1+2 \frac{\mathrm{z}}{\mathrm{~h}}\right) \mathrm{W}_{\mathrm{p}} \\
& \mathrm{~F}_{\mathrm{pv}}=0.7 \cdot 0.2 \mathrm{~S}_{\mathrm{DS}} \cdot \mathrm{~W}_{\mathrm{p}}
\end{aligned}
$$

FRONT-TO-BACK

$\mathrm{V}=$	41
$\mathrm{P}=$	23

$=W_{p}+F_{p v}$
$=\left[\left(W_{p}+F_{p v}\right) \cdot C G+F_{p h} \cdot(H / 2)\right] / H$

SIDE-TO-SIDE

$\mathrm{V}=$	42
$\mathrm{P}=$	34

\section*{Screws into Backing Plate
 | SMS = | 1/4" ϕ | (min) |
| :---: | :---: | :---: |
| $\mathrm{V}=$ | 10 | Lbs/screw |
| $\mathrm{P}=$ | 17 | Lbs/screw |
| $\mathrm{V}^{\prime}=$ | 613 | Lbs |
| $\mathrm{P}^{\prime}=$ | 261 | Lbs |
| DCR = | 0.08 | (OK) |

Screws into Metal Studs

$$
\begin{aligned}
& =\left[\left(W_{p}+F_{p v}\right)^{2}+F_{p h}^{2}\right]^{0.5} \\
& =\left[\left(W_{p}+F_{p v}\right) \cdot C G\right] / H+\left(F_{p h} \cdot C G\right) / B
\end{aligned}
$$

PLAN

Shear demand (in-plane)
Pull-out
Screw shear capacity per SSMA allowable loads table, p. 60 Screw pull-out capacity per SSMA allowable loads table, p. 60

$$
D C R=V / V^{\prime}+P / P^{\prime} \leq 1.0
$$

Shear demand (in-plane)
Pull-out
Screw shear capacity per SSMA allowable loads table, p. 60
Screw pull-out capacity per SSMA allowable loads table, p. 60

Job:	18SHA11 ARMC Ambulatory Clinic		16	
Calc By:	ISG	Date:		

DETAIL

Wall Mounted Monitor - TV on Ergotron Bracket

Stud Wall Top \& Bot Track Connections (ASD)
Top Connection: 0.157" ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
Above: NWC o/ Mtl Deck

Anchor spacing at top of wall
Total number of anchors engaged at top of wall
$=\mathrm{R}_{\text {TOP }} \cdot\left(\mathrm{n}_{\text {stud }} / \mathrm{n}_{\text {top }}\right)$
Shear capacity (ASD)

Brace spacing at top of wall
Total number of braces engaged at top of wall
$=\left[\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {partial }} / 2+0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {partial }}\right] \cdot\left(\mathrm{n}_{\text {stud }} / \mathrm{n}_{\text {top }}\right)$
Bottom Connection: 0.157" ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
Below: NWC o/ Mtl Deck

$\mathrm{s}_{\text {bot }}=$	24	in Lbs/anchor Lbs/anchor
$\mathrm{n}_{\text {bot }}=$	2	
$V=$	52	
$\mathrm{V}^{\prime}=$	90	

Anchors spacing at bottom of wall
Total number of anchors engaged at bottom of wall
$=R_{\text {BOT }} \cdot\left(n_{\text {stud }} / n_{\text {bot }}\right)$
Shear capacity (ASD)

Job:	18SHA11 ARMC Ambulatory Clinic		17
Calc By:	ISG	Date:	

DETAIL

| Suspender |
| ---: | :--- |

Equipment Screw Conn to P1538A (Unistrut Angle) on Trapeze

Screws	\#12	\#12			
Stl. Gage	18 ga	18 ga			
$\mathrm{n}_{\text {conn }}=$	8	8			
$V=$	23	48			$\mathrm{Lbs}_{(\text {(ASD) }}$
$\mathrm{V}^{\prime}=$	124	124			Lbs (ASD)
$\mathrm{T}=$	14	25			Lbs (ASD)
T' =	263	263			$\mathrm{Lbs}_{(\text {(ASD) }}$
DCR $=$	0.24	0.48			

Sheet metal screws (SMS)
Base material thickness
Number of screws to equipment (total)
$=0.7 \mathrm{~F}_{\mathrm{ph}} / \mathrm{n}_{\text {conn }}$
Screw shear capacity (SSMA Catalog pg. 60)
$=\left[0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{CG}-\left(0.6 \mathrm{~W}_{\mathrm{p}}-0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\min (\mathrm{B}, \mathrm{D}) / 2)\right] /\left(\min (\mathrm{B}, \mathrm{D}) \cdot \mathrm{n}_{\text {conn }} / 2\right)$
Screw Pullout Capacity (SSMA Catalog pg. 60)
$=\mathrm{V} / \mathrm{V}^{\prime}+\mathrm{T} / \mathrm{T}^{\prime}<1.0$
Equipment Spring Nut Conn to Trapeze

HHCS diameter
Number of HHCS to unistrut (total)
$=\left[0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{CG}-\left(0.6 \mathrm{~W}_{\mathrm{p}}-0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\min (\mathrm{B}, \mathrm{D}) / 2)\right] /\left(\min (\mathrm{B}, \mathrm{D}) \cdot \mathrm{n}_{\text {conn }} / 2\right)$
$=0.7 \mathrm{~F}_{\mathrm{ph}} / \mathrm{n}_{\text {conn }}$
Spring nut pull-out capacity Spring nut shear capacity
= V/V' + T/T' < 1.0

Unistrut Trapeze					in (min)
Unistrut =	P1000	P1000			
$\mathrm{n}_{\text {trapeze }}=$	2	2			
$\mathrm{L}=$	36	48			
w $=$	41	64			plf
$\mathrm{M}=$	556	1,537			Lb-in (ASD)
$\mathrm{M}^{\prime}=$	5,080	5,080			Lb-in (ASD)
$1=$	0.185	0.185			in ${ }^{4}$
$\Delta=$	0.014	0.069			
	L/2571	L/698			(L/240 Max)

Job:	18SHA11 ARMC Ambulatory Clinic		
Calc By:	ISG	Date:	$02 / 21 / 19$

Suspended Ceiling Equipment- (EF-1 \& RF-1)

Vertical Hanger Rod Design (See Unistrut Catalog, page 70)					
Diameter $=$	1/2	1/2			in
$\mathrm{s}_{\text {clip }}=$	12	12			in oc
\%	100\%	100\%			
$\mathrm{n}_{\text {rods }}=$	4	4			
$\mathrm{M}=$	2,478	8,864			Lb-in
$\mathrm{T}=$	296	603			$\mathrm{Lbs}_{(\text {(ASD) }}$
T' =	1,350	1,350			Lbs (ASD)
DCR ${ }_{\text {T }}=$	0.22	0.45			
$\mathrm{C}=$	213	430			$\mathrm{Lbs}_{(\text {(ASD) }}$
$\mathrm{C}^{\prime}=$	1,350	1,350			$\mathrm{Lbs}_{\text {(ASD) }}$
DCR ${ }_{\text {c }}=$	0.16	0.32			

Rod diameter
Spacing of stiffener cradle clips
Percentage of tensile capacity for compression
Number of rods per trapeze

Overturning moment $\quad=0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{CG}$	
Rod tension $\quad=\mathrm{M} /(2 \cdot \min [\mathrm{~B}, \mathrm{D}])+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) / \mathrm{n}_{\text {rods }}+0.7 \mathrm{~F}_{\mathrm{ph}}$	
Rod tensile capacity	
Rod compression $\quad=\mathrm{M} /(2 \cdot \min [\mathrm{~B}, \mathrm{D}])+\left(0.7 \mathrm{~F}_{\mathrm{pv}}-0.6 \mathrm{~W}_{\mathrm{p}}\right) / \mathrm{n}_{\text {rods }}+0.7 \mathrm{~F}_{\mathrm{ph}}$	
Rod compressive capacity	

Anchorage to Underside of Concrete - Hilti KB-TZ (ICC ESR-1917)

Normal or lightweight concrete	MTL DECK OR SLAB	E.A.
Concrete over metal deck?		
Concrete compressive strength	-	
Hilti KB-TZ anchor	*	
Carbon steel or Stainless steel	n	
Anchor O.D.	4, B^{2}	
Effective min anchor embedment		
Concrete thickness		
Min member thickness		
Seismic reduction per ACI App. D		
LWC reduction per ACI App. D		
Effectiveness factor		
Coefficient for pryout strength		
$=\mathrm{kcr}_{\text {cr }} \cdot\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5} \cdot \mathrm{hef}^{1.5}$		
Min anchor spacing		
Min. edge distance		
$=3 \mathrm{hef}_{\mathrm{ef}} \cdot\left(\min \left(1.5 \mathrm{~h}_{\mathrm{ef},} \mathrm{s} / 2\right)+\min \left(1.5 \mathrm{~h}_{\mathrm{ef},} \mathrm{c}\right)\right.$)		
$=9 \cdot h_{\text {ef }}{ }^{2}$		
Steel strength in tension		
Steel strength in shear		
$=\phi_{s} \lambda \phi_{\text {t, conc }} \cdot \min \left(\mathrm{N}_{\mathrm{p}, \mathrm{cr}}, \mathrm{N}_{\mathrm{b}}\right) \cdot\left(\mathrm{A}_{\mathrm{n}} / \mathrm{A}_{\mathrm{no}}\right)$	$\phi_{\text {t, conc }}=$	0.65
$=\lambda \phi_{\mathrm{v}, \text { conc }} \cdot \mathrm{k}_{\mathrm{cp}} \cdot \mathrm{N}_{\mathrm{b}} \cdot\left(\mathrm{A}_{\mathrm{n}} / \mathrm{A}_{\mathrm{no}}\right)$	$\phi_{\mathrm{v}, \text { conc }}=$	0.70
$=\phi_{\text {t,stel }} \cdot \mathrm{N}_{\mathrm{sa}}$	$\phi_{\mathrm{t} \text {,steel }}=$	0.75
$=\phi_{\mathrm{v}, \text { steel }} \cdot \mathrm{V}_{\text {sa }}$	$\phi_{\mathrm{v}, \text { steel }}=$	0.65

${ }^{1}$ If anchor is into concrete over metal deck this value refers to " $\mathrm{N}_{\mathrm{p} \text {, deck,cr" }}$ "
${ }^{2}$ If anchor is into concrete over metal deck this value refers to " $\mathrm{V}_{\text {sa,deck,eq" }}$
Vertical Hanger Anchorage (Hilti KB-TZ, ICC ESR-1917)

$\mathrm{n}=$	1	2			$\mathrm{Lbs}_{(\mathrm{ULT})}(\mathrm{min})$
$\Omega_{0} \cdot \mathrm{P}_{\mathrm{u}}=$	778	802			
$D C R_{\text {P, conc }}=$	0.53	0.54			
$\mathrm{DCR}_{\text {P, steel }}=$	0.10	0.10			

Total number of anchors
Tension $=\left(\Omega_{0} \cdot F_{p h} \cdot C G /(2 \cdot \min [B, D])+1.2 \mathrm{~W}_{\mathrm{p}}+\mathrm{F}_{\mathrm{pv}}\right) / n_{\text {rods }}+\Omega_{0} \cdot \mathrm{~F}_{\mathrm{ph}}$
$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { conc }} \leq 1.0$
$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }} \leq 1.0$

Brace Anchorage (Same anchor parameters as vertical anchor)

$\mathrm{n}=$	1	2			(min)
$\Omega_{0} \cdot \mathrm{P}_{\mathrm{u}}=$	657	681			Lbs (ULT)
$\Omega_{0} \cdot \mathrm{~V}_{\mathrm{u}}=$	657	340			Lbs (ULT)
$D C R_{P, \text { conc }}=$	0.45	0.46			
$D C R_{V, \text { conc }}=$	N/A	N/A			
$\mathrm{DCR}_{\text {P, steel }}=$	0.08	0.08			
DCR V ,steel $=$	0.20	0.11			
DCR $\mathrm{P}+\mathrm{V}=$	0.33	0.30			

Prestretched Aircraft cable diameter
Tension per cable $\quad=\left(0.7 \mathrm{~F}_{\mathrm{ph}}\right) \cdot 2^{0.5}$

Per ASHRAE
Total number of anchors $\quad=\Omega_{0} \cdot F_{\mathrm{ph}} / n$
Tension Demand $\quad=\Omega_{0} \cdot \mathrm{~F}_{\mathrm{ph}} / n$
Shear Demand
$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { conc }} \leq 1.0$
$\Omega_{\mathrm{o}} \mathrm{V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}, \text { conc }} \leq 1.0$
$\Omega_{\mathrm{o}} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }} \leq 1.0$
$\Omega_{\mathrm{o}} \mathrm{V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n} \text {, stel }} \leq 1.0$
$\max \left[\mathrm{DCR}_{\mathrm{P}, \text { conc }}, \mathrm{DCR}_{\mathrm{P}, \text { steel }}\right]^{5 / 3}+\max \left[\mathrm{DCR}_{\mathrm{V}, \text { conc }}, \mathrm{DCR}_{\mathrm{V}, \text { steel }}\right]^{5 / 3} \leq 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		19
Calc By:	ISG	Date:	

DETAIL

Vertical Hanger Anchorage (Hilti KB-TZ, ICC ESR-1917, Table 5)

Normal or lightweight concrete

Figure 5A
Concrete compressive strength Hilti KB-TZ anchor
Carbon steel or Stainless steel Anchor O.D.
Effective min anchor embedment
Concrete thickness o/ deck
Min concrete thickness o/ deck per section 4.1.10
Seismic reduction per ACl Ch. 17
$=\mathrm{N}_{\mathrm{p}, \mathrm{cr}}\left(\mathrm{f}_{\mathrm{c}} \mathrm{c} / 3000\right)$
Min anchor spacing per sections
Min. edge distance
Steel strength in tension (table 3 or 4)
Steel strength in shear
$=\phi_{s} \lambda \phi_{\mathrm{t}, \text { conc }} \cdot \mathrm{N}_{\mathrm{p}, \text { deck,cr }}$
$=\phi_{\mathrm{t}, \text { steel }} \cdot \mathrm{N}_{\mathrm{sa}}$
$=\phi_{v, \text { steel }} \cdot V_{\text {sa,deck,eq }}$
Tension demand $\quad \Omega_{0} \cdot \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{~W}_{\mathrm{p}}+\mathrm{F}_{\mathrm{pv}}+\Omega_{0} \cdot \mathrm{~F}_{\mathrm{ph}}$
$\Omega_{0} P_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { conc }} \leq 1.0$
$\Omega_{0} P_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }} \leq 1.0$

Note: All values are calculated
based on tabulated values found
in ICC-ESR 1917. Based on this
report, concrete breakout and
shear are not applicable. See
Table 5, footnote 8 for additional
information. No reduction for
LWC required per section 4.1.12,
last paragraph.

Brace Anchorage (Same anchor parameters as vertical anchor)

Tension demand Shear Demand $\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { conc }} \leq 1.0$ $\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }} \leq 1.0$
$\Omega_{0} \mathrm{~V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}, \text { steel }} \leq 1.0$
$\left(\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }}\right)^{5 / 3}+\left(\Omega_{0} \mathrm{~V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}, \text { steel }}\right)^{5 / 3} \leq 1.0$

Sheet:

Job:	18SHA11 ARMC Ambulatory Clinic		20
Calc By:	ISG	Date:	

DETAIL

Typical Suspended Pipe/Conduit Trapeze Support Under Concrete over Steel Deck
 5/S101

$\mathrm{z}=$ height of attachment, $\mathrm{h}=$ roof height
$\begin{aligned} & \text { ASCE } 7(13.3-1) \\ & \text { Governing } \mathrm{F}_{\mathrm{ph}} \text { coefficient }\end{aligned} \quad \mathrm{F}_{\mathrm{ph}}=\frac{0.4 \mathrm{~S}_{\mathrm{Ds}} \mathrm{a}_{\mathrm{p}}}{\left(\mathrm{R}_{\mathrm{p}} / \mathrm{l}_{\mathrm{p}}\right)}\left(1+2 \frac{\mathrm{z}}{\mathrm{h}}\right) \mathrm{W}_{\mathrm{p}}$
Total Linear Weight of Pipes
Trapeze Linear Spacing (in Plan) Transverse brace spacing Longitudinal brace spacing (pairs) Weight of Pipes on Horiz. Unistrut Weight of Unistrut Framing \& Misc $=W_{\text {PIPES }}+W_{\text {TRAPEZE }}$
$=\mathrm{F}_{\text {ph }} \mathrm{W}_{\text {Total }}\left(\mathrm{s}_{\text {TRANS }} / \mathrm{s}_{\text {TRAPEZE }}\right)$
$=\Omega_{0} \cdot \mathrm{~F}_{\mathrm{ph}} \mathrm{W}_{\text {TOTAL }}\left(\mathrm{s}_{\text {TRANS }} / \mathrm{s}_{\text {TRAPEZE }}\right)$
$=\mathrm{F}_{\mathrm{pv}} \mathrm{W}_{\text {TOTAL }}$
Unistrut Trapeze (ASD)

Unistrut	P1000				
$\mathrm{L}=$	4.0				ft (max)
w =	106				plf
$\mathrm{M}=$	2,533				Lb-in ${ }_{\text {(ASD) }}$
$\mathrm{M}^{\prime}=$	5,080				Lb-in (ASD)
$1=$	0.185				in ${ }^{4}$
$\Delta_{\text {DL }}=$	0.10				in
	L/504				(L/240 Max)

$=\left(\mathrm{W}_{\text {TOTAL }}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) / \mathrm{L}$
$=(w / 12) \cdot \mathrm{L}^{2} / 8$
(Per Unistrut Catalog p. 24)

Dead load deflection

Rod diameter
Spacing of stiffener cradle clips
Percentage of tensile capacity for compression
Rod Tension $\quad \mathrm{T}=\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) / 2+0.7 \mathrm{~F}_{\mathrm{ph}}$
Rod Tensile Capacity
Rod Compression $\quad \mathrm{C}=0.7 \mathrm{~F}_{\mathrm{ph}}+\left(0.6 \mathrm{~W}_{\mathrm{p}}-0.7 \mathrm{~F}_{\mathrm{pv}}\right) / 2$
Rod Compressive Capacity

Normal or lightweight concrete
Figure 5A
Concrete compressive strength
Hilti KB-TZ anchor
Carbon steel or Stainless steel
Anchor O.D.
Effective min anchor embedment
Concrete thickness o/ deck
Min concrete thickness o/ deck per section 4.1.10
Seismic reduction per ACl Ch .17
$=\mathrm{N}_{\mathrm{p}, \mathrm{cr}}\left(\mathrm{f}^{\prime} \mathrm{c} / 3000\right.$)
Min anchor spacing per sections
Min. edge distance
Steel strength in tension (table 3 or 4)
Steel strength in shear
$=\phi_{s} \lambda \phi_{t, \text { conc }} \cdot N_{p, \text { deck,cr }}$
$=\phi_{\mathrm{t}, \text { steel }} \cdot \mathrm{N}_{\mathrm{sa}}$
$=\phi_{\mathrm{v}, \text { steel }} \cdot \mathrm{V}_{\text {sa,deck,eq }}$
Tension Demand $\quad \Omega_{0} \cdot \mathrm{P}_{\mathrm{u}}=\left(1.2 \mathrm{~W}_{\mathrm{p}}+\mathrm{F}_{\mathrm{pv}}\right) / 2+\Omega_{0} \cdot \mathrm{~F}_{\mathrm{ph}}$
$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n} \text {, conc }} \leq 1.0$
$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }} \leq 1.0$

Bracing Design (Unistrut P1000, Lmax $=9^{\prime}-6^{\prime \prime}$, $\mathbf{r m i n}=0.577, K L / r=198$, load applied at slotted face)

Brace compression capacity, based on 10'-0" length Unistrut Catalog, pg 20

Brace Anchorage (Same anchor parameters as vertical anchor)

Tension demand
Shear Demand
$\Omega_{\mathrm{o}} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { conc }} \leq 1.0$
$\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n} \text {,steel }} \leq 1.0$
$\Omega_{\mathrm{o}} \mathrm{V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}, \text { steel }} \leq 1.0$
$\left(\Omega_{0} \mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}, \text { steel }}\right)^{5 / 3}+\left(\Omega_{0} \mathrm{~V}_{\mathrm{u}} / \phi \mathrm{V}_{\mathrm{n}, \text { stel }}\right)^{5 / 3} \leq 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		21	
Calc By:	ISG	Date:		

DETAIL

Screws into Stud

Stud Design	
$\mathrm{H}_{\text {stud }}=$	13.7
$\mathrm{H}_{\text {partial }}=$	9.5
$\mathrm{W}_{\mathrm{p} \text {, wall }}=$	8.0
$\mathrm{s}_{\text {stud }}=$	16
Stud $=$	400S125-54
$\mathrm{S}_{\mathrm{e}}=$	0.361
$\mathrm{I}_{\mathrm{e}}=$	0.830
$\mathrm{M}^{\prime}=$	10.8
$0.7 \mathrm{~F}_{\text {ph,wall }}=$	2.5
Live =	5.0

Load Case 1: (D+0.7E)

Load Case 2: ($\mathrm{D}+\mathrm{L}$)

ASCE 7 Tables 13.5-1
and 13.6
USGS sheet

Floor below (2nd Floor)
Floor above (3rd Floor)

Total weight of pipes/conduit @ strut support
Weight of strut support

Distance between top \& bottom screws
Distance from face of wall to center of pipe/conduit
$=0.3 \mathrm{~S}_{\mathrm{DS}} \cdot \mathrm{I}_{\mathrm{p}} \cdot \mathrm{W}_{\mathrm{p}}$
F_{ph} at floor below $\left(\mathrm{z}_{1} / \mathrm{h}\right)$
$F_{p h}$ at floor above ($\mathrm{z}_{2} / \mathrm{h}$)
Max $F_{\text {in }}$
$=0.2 \mathrm{~S}_{\mathrm{Ds}} \cdot \mathrm{W}_{\mathrm{p}}$
Horizontal seismic force
Vertical seismic force

Metal =	No. of screws at strut to stud (min) studs (min)	
Shear per sc	(vertical, gravity loads)	$=\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \div \mathrm{n}$
Shear per sc	(horizontal, side-to-side)	$=0.7 \mathrm{~F}_{\mathrm{ph}} \div \mathrm{n}$
Tension per	(front-to-back)	$=\left(W_{p}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{D} / \mathrm{H}$
Tension per	(side-to-side)	$=\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{D} / \mathrm{H}$

Screw shear capacity per SSMA allowable loads table, p. 60
Screw shear capacity per SSMA allowable loads table, p. 60
Screw pull-out capacity per SSMA allowable loads table, p. 60
DCR $=\max \left[\left(\frac{\mathrm{V}_{\text {VERT }}}{\mathrm{V}_{\text {VERT }}}+\frac{\mathrm{P}_{\mathrm{F}-\mathrm{B}}}{\mathrm{P}^{\prime}}\right),\left(\frac{\mathrm{V}_{\text {VERT }}}{\mathrm{V}^{\prime}}+\frac{\mathrm{V}_{\text {HERT }}}{\mathrm{V}_{\text {HORIZ }}^{\prime}}+\frac{\mathrm{P}_{\mathrm{S}-\mathrm{S}}}{\mathrm{P}^{\prime}}\right)\right] \leq 1.0$
Height of stud (maximum)
Height of stud (partial height wall)
Unit wt of partition wall
Stud spacing
$=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}} / \Omega_{\mathrm{b}}, \Omega_{\mathrm{b}}=1.67$
$=0.7(0.45) \mathrm{W}_{\mathrm{p}, \text { wall }}$

$=0.7 \mathrm{~F}_{\mathrm{ph}, \text { wall }} \cdot\left(\mathrm{s}_{\text {stud }} / 12\right)$
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}$
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {partial }} / 2+0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {partial }}$
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}$
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }}{ }^{2} / 8+0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{H}_{\text {stud }} / 4+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / 2$
$=M / M^{\prime} \leq 1.0$
Maximum Deflection (Limit to L/120)
$=$ Live $\cdot\left(\mathrm{s}_{\text {stud }} / 12\right)$
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}$
$=w_{\text {wall }} \cdot H_{\text {partial }} / 2+W_{p} \cdot(D / 12) / H_{\text {partial }}$
$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}$
$=w_{\text {wall }} \cdot H_{\text {stud }} / 2+W_{p} \cdot(D / 12) / 2$
$=M / M^{\prime} \leq 1.0$
Maximum Deflection (Limit to L/120)

Sheet:

Job:	18SHA11 ARMC Ambulatory Clinic		22
Calc By:	ISG	Date:	

Typical Wall-Mounted Pipe/Conduit Unistrut Support
10/S101

Connections at Top Track of Full-Height Wall - Load Case 1: (D+0.7E) Governs

NWC o/ Mtl Deck	
$\mathrm{Conn}_{(\mathrm{E})}=$	PAF
$\mathrm{s}_{(\mathrm{E})}=$	24
$\mathrm{n}_{(\mathrm{E})}=$	1
$\mathrm{V}_{(5 \mathrm{psf})}=$	68
$\mathrm{V}_{\text {wall }}=$	34
$\mathrm{V}_{\text {pipe }}=$	37
$\mathrm{V}_{(\mathrm{E})}=$	71
$\mathrm{V}^{\prime}{ }_{(\mathrm{E})}=$	90
DCR $=$	0.79

Type of existing floor/roof structure above
Existing connections at top track are power-actuated fasteners (PAF)
Spacing of existing PAF along top track of full-height wall (max)
Number of existing PAF resisting out-of-plane reaction from pipe/conduit loads
Existing shear demand at top of wall (based on 5 psf out-of-plane live load)
Shear demand at top of wall from uniform wall loads (based on 2.5 psf out-of-plane seismic load)
Additional shear demand from pipe/conduit only (based on Load Case 1)
$=\mathrm{V}_{\text {wall }}+\mathrm{V}_{\text {pipe }}$
0.157 " ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
$=\mathrm{V}_{(\mathrm{E})} \mathrm{V}_{(\mathrm{E})} \leq 1.0$
Braces at Top Track of Partial-Height Wall - Load Case 1: (D+0.7E) Governs

$\mathrm{s}_{\text {brace }}=$	48]in
$\mathrm{n}_{\text {brace }}=$	1	
$\mathrm{V}_{(5 \mathrm{psf})}=$	95	Lbs / brace
$\mathrm{V}_{\text {wall }}=$	48	Lbs / brace
$\mathrm{V}_{\text {pipe }}=$	39	Lbs / brace
$\mathrm{V}_{\text {brace }}=$	87	Lbs / brace

Spacing of existing braces along top track of partial-height wall (max)
Number of existing braces resisting out-of-plane reaction at top track (min)
Existing horizontal reaction force at brace (based on 5 psf out-of-plane live load)
Horizontal reaction force at brace from uniform wall loads (based on 2.5 psf out-of-plane seismic load)
Additional horizontal reaction force at brace from pipe/conduit only (based on Load Case 1)
$=\mathrm{V}_{\text {wall }}+\mathrm{V}_{\text {pipe }} \quad 87 \mathrm{Lbs} \leq 95 \mathrm{Lbs}$ (from 5 psf live), therefore braces are adequate by inspection
Connections at Bottom Track - Load Case 1: ($\mathrm{D}+0.7 \mathrm{E}$) Governs

NWC o/ Mtl Deck	
$\mathrm{Conn}_{(\mathrm{E})}=$	PAF
$\mathrm{s}_{(\mathrm{E})}=$	24
$\mathrm{n}_{(\mathrm{E})}=$	1
$\mathrm{V}_{(5 \mathrm{psf})}=$	68
$\mathrm{V}_{\text {wall }}=$	34
$\mathrm{V}_{\text {pipe }}=$	37
$\mathrm{V}_{(\mathrm{E})}=$	71
$\mathrm{V}^{\prime}{ }_{(\mathrm{E})}=$	90
DCR =	0.79

Type of existing floor structure below
Existing connections at bottom track are power-actuated fasteners (PAF)
Spacing of existing PAF along bottom track (max)
Number of existing PAF resisting out-of-plane reaction from pipe/conduit loads
Existing shear demand at bottom of wall (based on 5 psf out-of-plane live load)
Shear demand at bottom of wall from uniform wall loads (based on 2.5 psf out-of-plane seismic load)
Additional shear demand from pipe/conduit only (based on Load Case 1)
$=\mathrm{V}_{\text {wall }}+\mathrm{V}_{\text {pipe }}$
0.157 " ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
$=\mathrm{V}_{(\mathrm{E})} \mathrm{V}_{(\mathrm{E})}^{\prime} \leq 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		23
Calc By:	ISG	Date:	

Seismic Input

Design $=$ City		ASCE 7 Tables 13.5-1
$\mathrm{a}_{\mathrm{p}}=$	2.5	
$\mathrm{R}_{\mathrm{p}}=$	6.0	and 13.6-1
$\mathrm{S}_{\text {DS }}=$	1.35	See USGS sheet
$\mathrm{I}_{\mathrm{p}}=$	1.00	ASCE 7 Table 11.5-1
$\mathrm{z}_{1} / \mathrm{h}=$	0.33	Floor below (2nd Floor)
$z_{2} / \mathrm{h}=$	0.67	Floor above (3rd Floor)

Weight \& Dimensions	
$\mathrm{W}_{\mathrm{p}}=$	150
$\mathrm{H}=$	8.0
$\mathrm{B}=$	6.0
$\mathrm{D}=$	8.0
Seismic Forces	
$\mathrm{F}_{\mathrm{ph}, \text { min }}=$	0.41
$\mathrm{F}_{\mathrm{ph}, 1}=$	0.37
$\mathrm{F}_{\mathrm{ph}, 2}=$	0.53
$\mathrm{F}_{\mathrm{ph}, \text { avg }}=$	0.45
$\mathrm{F}_{\mathrm{ph}}=$	0.45
$\mathrm{F}_{\mathrm{pv}}=$	0.27
$\mathrm{F}_{\mathrm{ph}}=$	68
$\mathrm{F}_{\mathrm{pv}}=$	41

\section*{Screws into Backing
 | SMS = | 1/4" ${ }^{\text {d }}$ | |
| :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{F}-\mathrm{B}}=$ | 45 | Lbs |
| $V_{\text {S }-\mathrm{s}}=$ | 46 | Lbs |
| $\mathrm{P}_{\mathrm{F}-\mathrm{B}}=$ | 101 | Lbs |
| $\mathrm{P}_{\mathrm{s}-\mathrm{s}}=$ | 121 | Lbs |
| $\mathrm{V}^{\prime}=$ | 613 | Lbs |
| $\mathrm{P}^{\prime}=$ | 261 | Lbs |
| DCR $=$ | 0.54 | ≤ 1.0 (OK) |

$=0.3 \mathrm{~S}_{\mathrm{DS}} \cdot \mathrm{I}_{\mathrm{p}} \cdot \mathrm{W}_{\mathrm{p}}$
F_{ph} at floor below ($\mathrm{z}_{1} / \mathrm{h}$)
F_{ph} at floor above ($\mathrm{z}_{2} / \mathrm{h}$)

$$
\mathrm{F}_{\mathrm{ph}}=\frac{0.4 \mathrm{~S}_{\mathrm{Ds}} \mathrm{a}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{p}} / \mathrm{I}_{\mathrm{p}}}\left(1+2 \frac{\mathrm{z}}{\mathrm{~h}}\right) \mathrm{W}_{\mathrm{p}}
$$

Average of $\mathrm{F}_{\mathrm{ph}, 1} \& \mathrm{~F}_{\mathrm{ph}, 2}$
Max of $\mathrm{F}_{\mathrm{ph}, \text { min }}$ \& $\mathrm{F}_{\mathrm{ph}, \mathrm{avg}}$
$=0.2 \mathrm{~S}_{\mathrm{Ds}} \cdot \mathrm{W}_{\mathrm{p}}$
Horizontal seismic force

Vertical seismic force

$\mathrm{n}_{\text {bkg }}$	$=\square$
Metal	$=4$ No. of screws into backing (min)
	16 ga backing (min)

Shear per screw (front-to-back)

$$
=\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \div \mathrm{n}_{\mathrm{bkg}}
$$

$$
\text { Shear per screw (side-to-side) } \quad=\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right)^{2}+0.7 \mathrm{~F}_{\mathrm{ph}}^{2}\right]^{0.5} \div \mathrm{n}_{\mathrm{bkg}}
$$

$$
\text { Tension per screw (front-to-back) } \quad=\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{D} / \mathrm{H}+0.7 \mathrm{~F}_{\mathrm{ph}} / 2\right] \div\left(\mathrm{n}_{\mathrm{bkg}} / 2\right)
$$

$$
\text { Tension per screw (side-to-side) } \quad=\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{D} / \mathrm{H}+0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{D} / \mathrm{B}\right] \div\left(\mathrm{n}_{\mathrm{bkg}} / 2\right)
$$

Screw shear capacity per SSMA allowable loads table, p. 90
Screw pull-out capacity per SSMA allowable loads table, p. 90
$=\max \left[\mathrm{V}_{\mathrm{F}-\mathrm{B}} / \mathrm{V}^{\prime}+\mathrm{P}_{\mathrm{F}-\mathrm{B}} / \mathrm{P}^{\prime}, \mathrm{V}_{\mathrm{S}-\mathrm{S}} / \mathrm{V}^{\prime}+\mathrm{P}_{\mathrm{S}-\mathrm{S}} / \mathrm{P}^{\prime}\right] \leq 1.0$

Screw shear capacity per SSMA allowable loads table, p. 90
Screw pull-out capacity per SSMA allowable loads table, p. 90
$=\max \left[\mathrm{V}_{\mathrm{F}-\mathrm{B}} / \mathrm{V}^{\prime}+\mathrm{P}_{\mathrm{F}-\mathrm{B}} / \mathrm{P}^{\prime}, \mathrm{V}_{\mathrm{S}-\mathrm{S}} / \mathrm{V}^{\prime}+\mathrm{P}_{\mathrm{S}-\mathrm{S}} / \mathrm{P}^{\prime}\right] \leq 1.0$

```
Stud Design
```



```
Number of studs engaged
Height of stud (maximum)
Height of stud (partial height wall)
Unit weight of partition wall
Stud spacing
(min)
\(\begin{aligned} \mathrm{S}_{\mathrm{e}} & =20.361 \\ \mathrm{I}_{\mathrm{e}} & =2 \mathrm{in}^{3} \\ \mathrm{M}^{\prime}= & 0.830 \mathrm{in}^{4} \\ 0.7 \mathrm{~F}_{\mathrm{ph}, \text { wall }} & =10.8 \mathrm{kip-in} \\ \text { Live } & =2.5 \mathrm{psf} \\ & \end{aligned}\)
```

$=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}} / \Omega_{\mathrm{b}}, \Omega_{\mathrm{b}}=1.67$
$=0.7(0.45) \mathrm{W}_{\mathrm{p}, \text { wall }}$
Uniform live load on wall (CBC 1607.14)

$$
\begin{aligned}
& \mathrm{n}_{\text {wall }}=\square 18 \text { No. of screws into metal studs (min) } \\
& \text { Metal }=16 \mathrm{ga} \text { studs (min) } \\
& \text { Shear per screw (front-to-back) } \\
& =\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \div \mathrm{n}_{\text {wall }} \\
& \text { Shear per screw (side-to-side) } \\
& \text { Tension per screw (front-to-back) } \\
& =\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right)^{2}+0.7 \mathrm{~F}_{\mathrm{ph}}^{2}\right]^{0.5} \div \mathrm{n}_{\text {wall }} \\
& \text { Tension per screw (side-to-side) } \\
& =\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{D} / \mathrm{H}+0.7 \mathrm{~F}_{\mathrm{ph}} / 2\right] \div\left(\mathrm{n}_{\mathrm{wall}} / 2\right) \\
& =\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot \mathrm{D} / \mathrm{H}+0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{D} / \mathrm{B}\right] \div\left(\mathrm{n}_{\text {wall }} / 2\right)
\end{aligned}
$$

Load Case 1: (D+0.7E)

$\mathrm{w}_{\text {wall }}=$	3.4	plf / stud	$=0.7 \mathrm{~F}_{\text {ph,wall }} \cdot\left(\mathrm{s}_{\text {stud }} / 12\right)$
$\mathrm{R}_{\text {TOP }}=$	42	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\left[0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{R}_{\text {PARTIAL }}=$	36	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {partial }} / 2+\left[0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {partial }}\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{R}_{\text {вот }}=$	42	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\left[0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{M}=$	1.8	kip-in	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }}{ }^{2} / 8+\left[0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{H}_{\text {stud }} / 4+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / 2\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{DCR}_{\mathrm{M}}=$	0.17	≤ 1.0 (OK)	$=\mathrm{M} / \mathrm{M}^{\prime} \leq 1.0$
$\Delta=$	0.17	in (L/966)	Maximum Deflection (Limit to L/120)

Load Case 2: (D+L)

$\mathrm{w}_{\text {wall }}=$	6.7	plf / stud	$=$ Live $\cdot\left(\mathrm{s}_{\text {stud }} / 12\right)$
$\mathrm{R}_{\text {TOP }}=$	48	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) /\left(\mathrm{H}_{\text {stud }} \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{R}_{\text {PARTIAL }}=$	35	Lbs / stud	$=w_{\text {wall }} \cdot H_{\text {partial }} / 2+W_{p} \cdot(\mathrm{D} / 12) /\left(\mathrm{H}_{\text {partial }} \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{R}_{\text {BOT }}=$	48	Lbs / stud	$=w_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) /\left(\mathrm{H}_{\text {stud }} \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{M}=$	2.1	kip-in	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 8+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) /\left(2 \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{DCR}_{\mathrm{M}}=$	0.19	≤ 1.0 (OK)	$=M / M^{\prime} \leq 1.0$
$\Delta=$	0.22	in (L/754)	Maximum Deflection (Limit to L/120)

Connections at Top Track of Full-Height Wall - Load Case 2: (D+L) Governs

NWC o/ Mtl Deck		in
$\mathrm{Conn}_{(\mathrm{E})}=$	PAF	
$\mathrm{s}_{(\mathrm{E})}=$	24	
$\mathrm{n}_{\text {(E) }}=$	2	
$\mathrm{V}_{(5 \mathrm{psf})}=$	68	Lbs / PAF
$\mathrm{V}_{\text {wall }}=$	68	Lbs / PAF
$V_{\text {equip }}=$	4	Lbs / PAF
$\mathrm{V}_{(\mathrm{E})}=$	72	Lbs / PAF
$\mathrm{V}^{\prime}{ }_{(E)}=$	90	Lbs
DCR =	0.80	≤ 1.0 (OK)

Type of existing floor/roof structure above
Existing connections at top track are power-actuated fasteners (PAF)
Spacing of existing PAF along top track of full-height wall (max)
Number of existing PAF resisting reaction from equipment loads (distributed by backing \& top track)
Existing shear demand at top of wall (based on 5 psf out-of-plane live load)
Shear demand at top of wall from uniform wall loads (based on 5 psf out-of-plane live load)
Additional shear demand from equipment only (based on Load Case 2)
$=V_{\text {wall }}+V_{\text {equip }}$
$0.157 " \phi$ Hilti X-U w/ 1" Embed (ICC ESR-2269)
$=\mathrm{V}_{(\mathrm{E})} / \mathrm{V}_{(\mathrm{E})} \leq 1.0$
Braces at Top Track of Partial-Height Wall - Load Case 2: (D+L) Governs

$\mathrm{s}_{\text {brace }}=$	48	in	Spacing of existin
$\mathrm{n}_{\text {brace }}=$	2		Number of existing braces supporting section of top track at equipment (min)
$\mathrm{V}_{(5 \mathrm{psf})}=$	95	Lbs / brace	Existing horizontal reaction force at brace (based on 5 psf out-of-plane live load)
$\mathrm{V}_{\text {wall }}=$	48	Lbs / brace	Horizontal reaction force at brace from uniform wall loads (based on 5 psf out-of-plane live load)
$\mathrm{V}_{\text {equip }}=$	30	Lbs / brace	Additional horizontal reaction force at brace from equipment only (based on Load Case 2)
$\mathrm{V}_{\text {brace }}=$	78	Lbs / brace	$=\mathrm{V}_{\text {wall }}+\mathrm{V}_{\text {equip }} \quad 78 \mathrm{Lbs} \leq 95 \mathrm{Lbs}$ (from 5 psf live), therefore braces are adequate by inspection

Connections at Bottom Track - Load Case 2: (D+L) Governs

NWC o/ Mtl Deck	
$\mathrm{Conn}_{(\mathrm{E})}=$	PAF
$\mathrm{S}_{(\mathrm{E})}=$	24
$\mathrm{n}_{\text {(E) }}=$	2
$\mathrm{V}_{(5 \mathrm{psf})}=$	68
$\mathrm{V}_{\text {wall }}=$	68
$\mathrm{V}_{\text {equip }}=$	4
$\mathrm{V}_{(\mathrm{E})}=$	72
$\left.\mathrm{V}^{\prime} \mathrm{EE}\right)=$	90
DCR $=$	0.80

[^0]| Job: | 18SHA11 ARMC Ambulatory Clinic | | 25 | |
| ---: | :---: | ---: | ---: | :--- |
| Calc By: | ISG | Date: | | |

DETAIL

Typical Unistrut Wall-Mounted Equipment (150 Lbs max)	13/S101

Seismic Input		
Design =		
$\mathrm{a}_{\mathrm{p}}=$	2.5	ASCE 7 Tables 13.5-1
$\mathrm{R}_{\mathrm{p}}=$	6.0	and 13.6-1
$\mathrm{S}_{\mathrm{DS}}=$	1.35	See USGS sheet
$\mathrm{I}_{\mathrm{p}}=$	1.00	ASCE 7 Table 11.5-1
$z_{1} / \mathrm{h}=$	0.33	Floor below (2nd Floor)
$z_{2} / \mathrm{h}=$	0.67	Floor above (3rd Floor)

Weight \& Dimensions		Lbs (max)
$\mathrm{W}_{\mathrm{p}}=$	150	
$\mathrm{H}=$	8.0	in (min)
$B=$	6.0	in (min)
$\mathrm{D}=$	8.0	in (max)
$\mathrm{e}=$	1.6	

$\mathrm{n}_{\text {wall }}=\square 12$ No. of screws into metal studs (2 screws into each stud at each Unistrut)
Metal $=16 \mathrm{ga}$ studs (min)
Shear per screw (front-to-back)

$$
\begin{aligned}
& =\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \div \mathrm{n}_{\text {wall }} \\
& =\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right)^{2}+0.7 \mathrm{~F}_{\mathrm{ph}}^{2}\right]^{0.5} \div \mathrm{n}_{\text {wall }} \\
& =\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D}+\mathrm{e}) / \mathrm{H}+0.7 \mathrm{~F}_{\mathrm{ph}} / 2\right] \div\left(\mathrm{n}_{\text {wall }} / 2\right) \\
& =\left[\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D}+\mathrm{e}) / \mathrm{H}+0.7 \mathrm{~F}_{\mathrm{ph}} \cdot(\mathrm{D}+\mathrm{e}) / \mathrm{B}\right] \div\left(\mathrm{n}_{\text {wall }} / 2\right)
\end{aligned}
$$

Tension per screw (front-to-back)

Screw shear capacity per SSMA allowable loads table, p. 90
Screw pull-out capacity per SSMA allowable loads table, p. 90
$=\max \left[\mathrm{V}_{\mathrm{F}-\mathrm{B}} / \mathrm{V}^{\prime}+\mathrm{P}_{\mathrm{F}-\mathrm{B}} / \mathrm{P}^{\prime}, \mathrm{V}_{\mathrm{S}-\mathrm{S}} / \mathrm{V}^{\prime}+\mathrm{P}_{\mathrm{S}-\mathrm{S}} / \mathrm{P}^{\prime}\right] \leq 1.0$

Stud Design			
$\mathrm{n}_{\text {stud }}=$	3		Number of studs engaged
$\mathrm{H}_{\text {stud }}=$	13.7	ft	Height of stud (maximum)
$\mathrm{H}_{\text {partial }}=$	9.5	ft	Height of stud (partial height wall)
$\mathrm{W}_{\mathrm{p}, \text { wall }}=$	8.0	psf	Unit weight of partition wall
$\mathrm{s}_{\text {stud }}=$	16	in	Stud spacing
Stud $=$	25-54		(min)
$\mathrm{S}_{\mathrm{e}}=$	0.361	in^{3}	
$\mathrm{I}_{\mathrm{e}}=$	0.830	in ${ }^{4}$	
$\mathrm{M}^{\prime}=$	10.8	kip-in	$=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}} / \Omega_{\mathrm{b}}, \Omega_{\mathrm{b}}=1.67$
$0.7 \mathrm{~F}_{\mathrm{ph}, \mathrm{wall}}=$	2.5	psf	$=0.7(0.45) \mathrm{W}_{\mathrm{p}, \text { wall }}$
Live =	5.0	psf	Uniform live load on wall (CBC 1607.14)

$\xrightarrow[\text { MAX MOMENT }]{\text { MOUIP }}$

MAX ENDREACTIONS MEOUIP © TOP OR BOTIOM

Job:	18SHA11 ARMC Ambulatory Clinic		26
Calc By:	ISG	Date:	

Typical Unistrut Wall-Mounted Equipment (150 Lb			
Load Case 1: (D+0.7E)			
$\mathrm{w}_{\text {wall }}=$	3.4	plf / stud	$=0.7 \mathrm{~F}_{\text {ph,wall }} \cdot\left(\mathrm{s}_{\text {stud }} / 12\right)$
$\mathrm{R}_{\text {TOP }}=$	42	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\left[0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{R}_{\text {PARTIAL }}=$	36	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {partial }} / 2+\left[0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {partial] }} / \mathrm{n}_{\text {stud }}\right.$
$\mathrm{R}_{\text {BOT }}=$	42	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\left[0.7 \mathrm{~F}_{\mathrm{ph}}+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / \mathrm{H}_{\text {stud }}\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{M}=$	1.8	kip-in	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }}{ }^{2} / 8+\left[0.7 \mathrm{~F}_{\mathrm{ph}} \cdot \mathrm{H}_{\text {stud }} / 4+\left(\mathrm{W}_{\mathrm{p}}+0.7 \mathrm{~F}_{\mathrm{pv}}\right) \cdot(\mathrm{D} / 12) / 2\right] / \mathrm{n}_{\text {stud }}$
$\mathrm{DCR}_{\mathrm{M}}=$	0.17	≤ 1.0 (OK)	$=M / M^{\prime} \leq 1.0$
$\Delta=$	0.17	in (L/966)	Maximum Deflection (Limit to L/120)
Load Case 2: (D+L)			
$\mathrm{w}_{\text {wall }}=$	6.7	plf / stud	$=$ Live $\cdot\left(\mathrm{s}_{\text {stud }} / 12\right)$
$\mathrm{R}_{\text {TOP }}=$	48	Lbs / stud	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }} / 2+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) /\left(\mathrm{H}_{\text {stud }} \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{R}_{\text {PARTIAL }}=$	35	Lbs / stud	$=w_{\text {wall }} \cdot H_{\text {partial }} / 2+W^{\text {p }} \cdot(\mathrm{D} / 12) /\left(\mathrm{H}_{\text {partial }} \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{R}_{\text {Вот }}=$	48	Lbs / stud	$=w_{\text {wall }} \cdot H_{\text {stud }} / 2+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) /\left(\mathrm{H}_{\text {stud }} \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{M}=$	2.1	kip-in	$=\mathrm{w}_{\text {wall }} \cdot \mathrm{H}_{\text {stud }}{ }^{2} / 8+\mathrm{W}_{\mathrm{p}} \cdot(\mathrm{D} / 12) /\left(2 \cdot \mathrm{n}_{\text {stud }}\right)$
$\mathrm{DCR}_{\mathrm{M}}=$	0.19	≤ 1.0 (OK)	$=M / M^{\prime} \leq 1.0$
$\Delta=$	0.22	in (L/754)	Maximum Deflection (Limit to L/120)

Connections at Top Track of Full-Height Wall - Load Case 2: (D+L) Governs

NWC o/ Mtl Deck	
$\mathrm{Conn}_{(\mathrm{E})}=$	PAF
$\mathrm{s}_{(\mathrm{E})}=$	24
$\mathrm{n}_{(\mathrm{E})}=$	2
$\mathrm{V}_{(5 \mathrm{psf})}=$	68
$\mathrm{V}_{\text {wall }}=$	68
$\mathrm{V}_{\text {equip }}=$	4
$\mathrm{V}_{(\mathrm{E})}=$	72
$\mathrm{V}^{\prime}(\mathrm{E})=$	90
DCR $=$	0.80

Type of existing floor/roof structure above
Existing connections at top track are power-actuated fasteners (PAF)
Spacing of existing PAF along top track of full-height wall (max)
Number of existing PAF resisting reaction from equipment loads (distributed by backing \& top track)
Existing shear demand at top of wall (based on 5 psf out-of-plane live load)
Shear demand at top of wall from uniform wall loads (based on 5 psf out-of-plane live load)
Additional shear demand from equipment only (based on Load Case 2)
$=\mathrm{V}_{\text {wall }}+\mathrm{V}_{\text {equip }}$
0.157 " ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
$=\mathrm{V}_{(\mathrm{E})} / \mathrm{V}_{(\mathrm{E})}^{\prime} \leq 1.0$
Braces at Top Track of Partial-Height Wall - Load Case 2: (D+L) Governs

$=$	48	in
$\mathrm{n}_{\text {brace }}=$	2	
$\mathrm{V}_{(5 \text { psf) }}=$	95	Lbs / brace
$\mathrm{V}_{\text {wall }}=$	48	Lbs / brace
$\mathrm{V}_{\text {equip }}=$	30	Lbs / brace
$\mathrm{V}_{\text {brace }}=$	78	Lbs / brace

Spacing of existing braces along top track of partial-height wall (max)
Number of existing braces supporting section of top track at equipment (min)
Existing horizontal reaction force at brace (based on 5 psf out-of-plane live load)
Horizontal reaction force at brace from uniform wall loads (based on 5 psf out-of-plane live load)
Additional horizontal reaction force at brace from equipment only (based on Load Case 2)
$=\mathrm{V}_{\text {wall }}+\mathrm{V}_{\text {equip }} \quad 78 \mathrm{Lbs} \leq 95 \mathrm{Lbs}$ (from 5 psf live), therefore braces are adequate by inspection

Connections at Bottom Track - Load Case 2: (D+L) Governs

NWC o/ Mtl Deck		in
$\mathrm{Conn}_{(\mathrm{E})}=$	PAF	
$\mathrm{s}_{(\mathrm{E})}=$	24	
$\mathrm{n}_{(\mathrm{E})}=$	2	
$V_{(5 \mathrm{psf})}=$	68	Lbs / PAF
$\mathrm{V}_{\text {wall }}=$	68	Lbs / PAF
$V_{\text {equip }}=$	4	Lbs / PAF
$\mathrm{V}_{(\mathrm{E})}=$	72	Lbs / PAF
$\mathrm{V}^{\prime}{ }_{(E)}=$	90	Lbs
DCR =	0.80	≤ 1.0 (OK)

Type of existing floor structure below
Existing connections at bottom track are power-actuated fasteners (PAF)
Spacing of existing PAF along bottom track (max)
Number of existing PAF resisting reaction from equipment loads (distributed by backing \& bottom track)
Existing shear demand at bottom of wall (based on 5 psf out-of-plane live load)
Shear demand at bottom of wall from uniform wall loads (based on 5 psf out-of-plane live load)
Additional shear demand from equipment only (based on Load Case 2)
$=V_{\text {wall }}+V_{\text {equip }}$
0.157 " ϕ Hilti X-U w/ 1" Embed (ICC ESR-2269)
$=\mathrm{V}_{(\mathrm{E})} / \mathrm{V}_{(\mathrm{E})}^{\prime} \leq 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		A1
Calc By:	ISG	Date:	

$\pm \pm$ Aobersow	$\overline{7}$
-ma	1
an erpens	

GEFTKCAKCHORASE

ELEYATLO

NOTES

1 FOFOES ARE DETERMNED PER 2013 CALPORNA BUIDNGG CODE AND ASCE 7-10 STRENGTH DESGGN S LSED. (SDS $=2.20, a p=25 ; b=15, \mathrm{Pp}=25, \mathrm{z} / \mathrm{h} \leq 1)$

> HOREZONTAL FORCE (EN $=396 \mathrm{Wo}$
> VERTICA. FORCE $(E . y)=0.44 \mathrm{~W}_{p}$
2. CENTER OF GRAVTY (CG) AND WEIGHT ARE THE GOVERNNG PARAMETERS FOR DESGGN. THESE CALOLLATIONS ENCOMPASS ALL WEGHTS LP TO THE MAXIMLM WEIGHT SHOWN.
3. STfluctural engineer of becord for the bulldng shall provide SLPPORT STRUCTURE DESIGNED TO SLPPORT WEIGHTS AND FORCES SHOWN IN COMBHNATON WTH ALL OTHER LOADS THAT MAY BE PRESENT.

L.T.coss 2 VYO

Job:	18SHA11 ARMC Ambulatory Clinic		A2
Calc By:	ISG	Date:	

LOASS
WEGMT $=47 \mathrm{E}$
HORZONTAI FOAEE $E=396 W_{0}=86 \mathrm{LB}$
VEHTCAL FOPCE $E=044 \mathrm{~W}=21 \mathrm{LB}$
BOT FOACES

BOLI ORG: PROPERIES
$f_{X X}=24 n^{4}$
$1_{2 Z}=24 n^{4}$
$y_{y=4}=48 n^{4}$

MONENTS

TENSONTI
$T_{i}=\frac{74674(4)}{24}+\frac{47+(6)+24 z}{3 \mathrm{san}}=270 \angle \mathrm{BROD}$ (MAO

SHEARM

Figure 46: Anchorage \& Seismic single ceiling model.

Sheet:

Job:	18SHA11 ARMC Ambulatory Clinic		A3	
Calc By:	ISG	Date:		

WARRANTY: Limited 5-year

SA730P SmartMount ${ }^{\circledR}$ Articulating Wall Mount for 10 " to 29 " Displays

Product Specifications

Architect Specifications

The SmartMounte Articulating Wall Mount shall be a Peerless-AV model SA730P and shall be located where indicated on the plans. Assembly and installation shall be done according to instructions provided by the manufacturer.

Visit peerless-av.com to see the complete line of AV solutions from Peerless-AV, including outdoor displays, wireless, kiosks, digital audio, display mounts, projector mounts, carts/stands, and a full assortment of accessories.

Peerless-AV 2300 White Oak Circle Aurora, IL 60502 USA
(800) 865-2112 (630) 375-5100 Fax: (800) 359-6500
Peerless-AV EMEA
Unit 3 Watford Interchange
Colonial Way, Watford
Herts, WD24 4WP
United Kingdom
+44 (0) 1923200100
Fax: +44 (0) 1923200101

Peerless-AV EMEA Unit 3 Watford Interchange Herts, WD24 4WP United Kingdom Fax: +44 (0) 1923200101

Peerless-AV Latin America Ave de las Industrias 413 Parque Industrial Escobedo Escobedo, N.L.,
Mexico 66062
+52 (81) 8384-8300
Fax: +52 (81) 8384-8360

Job:	18SHA11 ARMC Ambulatory Clinic		A4
Calc By:	ISG	Date:	

GENERAL NOTES

1. THIS OSHPD PREAPPROVAL OF MANUFACTURER'S CERTIFICATION (OPM) IS BASED ON THE 2013 CBC. THE DEMANDS (DESIGN FORCES) FOR USE WITH THIS OPM SHALL BE BASED ON THE 2013 CBC
2. THIS DOCUMENT MAY ONLY BE USED WITH THE EXPRESS WRITTEN CONSENTOFTHE MANUFACTURER LISTED ABOVE FOR THE SPECIFIC PROJECT SITE AND INSTALLATION LOCATION. THIS DOCUMENT IS INVALID WITHOUT SUCH CONSENT.
3. THIS PREAPPROVAL CONFORMS TO THE 2013 CALIFORNIA BUILDING CODE WHERE SDS IS NOT GREATER THAN $1.60,2.20$
4. FORCES PER ASCE $7-10$ SECTION 13.3.1. EQUATIONS $13.3-1,13,3-2 \& 13.3-3$, WHERE $\operatorname{SDS}=1.60, a_{p}=1.0, l_{p}=1.5, R_{p}=1.5, z \mathrm{~h} \leq 1$ CONCRETE WALL. SEE FOLLOWING SHEETS FOR Ω_{0} WHERE SDS $=2.20, a_{p}=1.0, l_{p}=1.5, R_{p}=1.5, z / h<1$ SEE FOLLOWING SHEETS FOR Ω
5. THIS PREAPPROVAL COVERS ONLY THE SUPPORTS AND ATTACHMENTS OF THE EQUIPMENT TO THE STRUCTURE.
6. ALL DESIGN FORCES SHOWN ON THE DRAWINGS ARE FACTORED LOADS THAT SHALL BE USED FOR STRENGTH DESIGN.
7. CONCRETE WALL VALID FOR DEMANDS SHOWN AT ANY ELEVATION (i.e. $\mathrm{z} / \mathrm{h} \leq 1$)
8. RESPONSIBILITIES OF THE STRUCTURAL ENGINEER OF RECORD OF THE BUILDING
A. PROVIDE SUPPORTING STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN IN ADDITION TO ALL OTHER LOADS.
B. VERIFY THAT THE INSTALLATION IS IN CONFORMANCE WITH THE 2013 CBC AND WITH THE DETAILS, MATERIAL AND GAGE OF THE UNIT WHERE ATTACHMENTS ARE MADE AGREE WITH THE INFORMATION SHOWN ON THE PREAPPROVAL DOCUMENTS.
C. VERIFY THAT PROJECT SPECIFIC VALUES OF SDS \& z/h RESULT IN SEISMIC FORCES (En, Ev) THAT DO NOT EXCEED THE VALUES ON THE DETAILS.
D. VERIFY THAT THE CONCRETE WALL TO WHICH THE EQUIPMENT IS ANCHORED MEETS THE REQUIREMENTS OF THE APPLICABLE ICC ESR.
E. VERIFY THAT THE ANCHORS ARE AN ADEQUATE DISTANCE FROM ANY CONCRETE WALL EDGES OR OPENINGS (SEE TYPICAL DETAIL ON SHEET 2).
F. VERIFY THAT ALL NEW OR EXISTING ANCHORS ARE AN ADEQUATE DISTANCE FROM THE UNIT ATTACHMENTS AND CHECK FOR INTERACTION WHERE OTHER ANCHORS ARE WITHIN 18" OR 6hef FROM THIS UNIT'S ANCHORS.
G. DESIGN BACKING BARS, STUDS, ETC. WHICH THE UNITS ARE ATTACHED TO AS NOTED ON THE DRAWINGS.

peerlesso AM

Job:	18SHA11 ARMC Ambulatory Clinic		A7	
Calc By:	ISG	Date:		

SmartMount® Universal Tilt Wall Mount | Peerless-AV
B2B (https://B2B.PEERLESS.

AV.COM/USER/LOGIN.ASPX?

Job:	18SHA11 ARMC Ambulatory Clinic		A8
Calc By:	ISG	Date:	

GENERAL NOTES

1. THIS OSHPD PREAPPROVAL OF MANUFACTURER'S CERTIFICATION (OPM) IS BASED ON THE 2013 CBC. THE DEMANDS (DESIGN FORCES) FOR USE WITH THIS OPM SHALL BE BASED ON THE 2013 CBC
2. THIS DOCUMENT MAY ONLY BE USED WITH THE EXPRESS WRITTEN CONSENTOFTHE MANUFACTURER LISTED ABOVE FOR THE SPECIFIC PROJECT SITE AND INSTALLATION LOCATION. THIS DOCUMENT IS INVALID WITHOUT SUCH CONSENT.
3. THIS PREAPPROVAL CONFORMS TO THE 2013 CALIFORNIA BUILDING CODE WHERE SOS IS NOT GREATER THAN 2.20.
4. FORCES PER ASCE 7-10 SECTION 13.3.1. EQUATIONS $13.3-1,13.3-2 \& 13.3-3$,

WHERE $\operatorname{SDS}=2.20, a_{p}=1.0, l_{p}=1.5, R p=1.5, z \mathrm{~h} \leq 1$ CONCRETE WALL. SEE FOLLOWING SHEETS FOR Ω_{0}
5. THIS PREAPPROVAL COVERS ONLY THE SUPPORTS AND ATTACHMENTS OF THE EQUIPMENT TO THE STRUCTURE.
6. ALL DESIGN FORCES SHOWN ON THE DRAWINGS ARE FACTORED LOADS THAT SHALL BE USED FOR STRENGTH DESIGN.
7. CONCRETE WALL DETAIL VALID FOR DEMANDS SHOWN ATANY ELEVATION. (i.e. $z / \mathrm{h} \leq 1$)
8. RESPONSIBILITIES OF THE STRUCTURAL ENGINEER OF RECORD OF THE BUILDING
A. PROVIDE SUPPORTING STRUCTURE TO SUPPORT WEIGHTS AND FORCES SHOWN IN ADDITION TO ALL OTHER LOADS.
B. VERIFY THAT THE INSTALLATION IS IN CONFORMANEE WITH THE 2013 CBC AND WITH THE DETAILS, MATERIAL AND GAGE OF THE UNIT WHERE ATTACHMENTS ARE MADE AGREE WITH THE INFORMATION SHOWN ON THE PREAPPROVAL DOCUMENTS.
C. VERIFY THAT PROJECT SPECIFIC VALUES OF SDS \& z/h RESULT IN SEISMIC FORCES (En, Ev) THAT DO NOT EXCEED THE VALUES ON THE DETAILS.
D. VERIFY THAT THE CONCRETE WALL TO WHICH THE EQUIPMENT IS ANCHORED MEETS THE REQUIREMENTS OF THE APPLICABLE ICC ESR.
E. VERIFY THAT THE ANCHORS ARE AN ADEQUATE DISTANCE FROM ANY CONCRETE WALL EDGES OR OPENINGS (SEE TYPICAL DETAIL ON SHEET 2).
F. VERIFY THAT ALL NEW OR EXISTING ANCHORS ARE AN ADEQUATE DISTANCE FROM THE UNIT ATTACHMENTS AND CHECK FOR INTERACTION WHERE OTHER ANCHORS ARE WITHIN 18" OR 6hef FROM THIS UNIT'S ANCHORS.
G. DESIGN BACKING BARS, STUDS, ETC. WHICH THE UNITS ARE ATTACHED TO AS NOTED ON THE DRAWINGS.

Job:	18SHA11 ARMC Ambulatory Clinic		A11
Calc By:	ISG	Date:	

Corners and intersections on the face of the cabinet and door are structurally formed for rigidity, cleanability and appearance. Both models are supported on a stainless-steel integral subbase. The cabinet doors are available in solid vinyl coated galvanized steel material with stainless steel inside and include optional tempered double pane glass window(s). Interior cabinet shelves (wire racks) are polyester powder coated steel. Interior air ducts and fan guards are flame retardant Acrylonitrile Butadiene Styrene (ABS) material. If a freestanding model, the cabinet top and side panels are vinyl coated galvanized steel.
Doors are of double-wall construction with 1-1/2" (38 mm) thick insulation between the walls. Right-hand door swing is provided; swing is reversible. Door closes against a heatresistant, magnet-imbedded, vinyl gasket. Pivot type hinges are stainless steel.
Heating chamber compartment is insulated with 1 " (25 mm) thick, fiberglass blanket. An impedance protected fan circulates air within the chamber to provide even heat distribution.

Lower chamber (dual-compartment model) includes two polyester powder coated steel wire rack shelves, adjustable in $3^{\prime \prime}(76 \mathrm{~mm})$ increments. Door structure mounting, gasket and hinges are the same as the door on the upper chamber.
Chamber(s) is heated by an electric rod heater operating on 120 or 230 Volt, $50 / 60 \mathrm{~Hz}$ power.

ENGINEERING DATA

Unit	Approx. Unit Wt. lb (kg)
Single-Compartment:*	
$18^{\prime \prime}(457 \mathrm{~mm})$ Wall/Counter Mounting	$131(60)$
$18^{\prime \prime}(457 \mathrm{~mm})$ Recess Mounting	$105(48)$
$24^{\prime \prime}(610 \mathrm{~mm})$ Wall/Counter Mounting	$142(65)$
$24^{\prime \prime}(610 \mathrm{~mm})$ Recess Mounting	$115(52)$
Dual-Compartment: ${ }^{\dagger}$	
$188^{\prime \prime}(457 \mathrm{~mm})$ Open-Mounted	$324(147)$
$18^{\prime \prime}(457 \mathrm{~mm})$ Recessed Mounting	$288(131)$
$24^{\prime \prime}(610 \mathrm{~mm})$ Open-Mounted	$375(170)$
$24^{\prime \prime}(610 \mathrm{~mm})$ Recessed Mounting	$328(149)$
$24^{\prime \prime}(610 \mathrm{~mm})$ Mobile Base	$483(219)$

* For glass door option, add $6 \mathrm{lb}(2.7 \mathrm{~kg})$.
† For all glass door options except $18^{\prime \prime}(457 \mathrm{~mm})$, add $14 \mathrm{lb}(6 \mathrm{~kg})$; for $18 "$ (457 mm) glass door option, add $48 \mathrm{lb}(22 \mathrm{~kg})$.

CONTROLS

Cabinet controls are digital and similar for single- and dualcompartment configurations. Both controls have a Main Power on/off switch.

The double cabinet control panel has control and temperature display functions for both cabinets. The upper cabinet control includes an on/standby key and digital temperature display. Also included is a ${ }^{\circ}{ }^{\circ} /{ }^{\circ} \mathrm{C}$ temperature display selection key and a SET temperature key with incremental raise/lower temperature set keys. LED lights indicate the on/standby status for cabinet heating, door ajar indication and SET selections have been made. The lower cabinet control includes an on/ standby switch and digital temperature display. The lower cabinet also includes a SET temperature switch with incremental raise/lower temperature set keys. Temperature control lockout designates user adjustment.
The single cabinet control panel has control and temperature display functions including an on/standby switch, digital temperature display, ${ }^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{C}$ selection key and a SET temperature key with incremental raise/lower temperature set keys. LED lights indicate the on/standby status for cabinet heating, door ajar position and when SET selections have been made.
Upper compartment and single compartment controls include IV and IRR/Blanket mode setting switches, limiting temperature set ranges to $90-110^{\circ} \mathrm{F}\left(32.2-43.3^{\circ} \mathrm{C}\right)$ and $90-160^{\circ} \mathrm{F}$ (32.2-
$71.1^{\circ} \mathrm{C}$), respectively. For lower compartment controls, the temperature selection range is $90-160^{\circ} \mathrm{F}\left(32.2-71.1^{\circ} \mathrm{C}\right)$.
Both controls monitor and regulate the heating of the interior compartment(s). The control for upper or single compartment ensures a temperature accuracy of $\pm 3^{\circ} \mathrm{F}\left(\pm 1.7^{\circ} \mathrm{C}\right)$ when warming IV/irrigation solution. The control for lower compartment ensures a temperature accuracy of $\pm 5^{\circ} \mathrm{F}$ $\left(\pm 2.8^{\circ} \mathrm{C}\right)$ when warming irrigation solution.
An overtemperature alarm visually and audibly alerts operator should an overtemperature condition occur (chamber temperature greater than $10^{\circ} \mathrm{F}\left[5.5^{\circ} \mathrm{C}\right]$ above set temperature). In the event of an overtemperature condition, the overtemperature control automatically turns off the heater(s). An optional USB peripheral connection allows Customer to plug a PC or laptop computer into the warming cabinet to retrieve stored temperature data from control memory. The data is stored or printed from the computer. Data capture software for use on PC is provided with the warming cabinet.

MOUNTING ARRANGEMENT

Dual-compartment models may be installed as freestanding or recessing into a partition wall. If model is recess installed, a synthetic-rubber sealing gasket is provided to ensure close fit of cabinet front to the face of the wall partition. Recessed cabinet requires no supplementary supports behind the wall partition (except in seismic locations).
Single-compartment models may be installed freestanding on shelf or counter surfaces or recessed into a partition wall.

Job:	18SHA11 ARMC Ambulatory Clinic		A12
Calc By:	ISG	Date:	

OPTIONS

Mobile base with bumpers (for dual 24" [610 mm] deep cabinets only). Casters are used to allow warming cabinet mobility. Press foot lever down to lock; push foot lever in to unlock.
USB port for temperature recording.
Electrical numeric keypad door locks are available for keyless entry.

PREVENTIVE MAINTENANCE

A global network of skilled service specialists can provide periodic inspections and adjustments to help ensure costeffective performance. STERIS representatives can provide information regarding annual maintenance agreements.

NOTES

1. Due to the variety of building constructions employed, fasteners for mounting cabinet to wall are not provided by STERIS. Wall(s) must be adequately reinforced to support operating weight of cabinet.
2. Customer must ensure warming cabinet is installed per applicable seismic requirements.

INTERNAL DIMENSIONS AND CAPACITY

Unit	Upper Chamber Single Chamber Unit (Height x Width \times Depth)	Lower Chamber Double Chamber Unit (Height \times Width \times Depth)
$18^{\prime \prime}$ Depth	$13-1 / 2 \times 24 \times 16-7 / 8^{\prime \prime}=3.1 \mathrm{cu} . \mathrm{ft}$. $(343 \times 610 \times 429 \mathrm{~mm})$	$36-1 / 2 \times 24 \times 16-7 / 8^{\prime \prime}=8.5 \mathrm{cu} . \mathrm{ft}$. $(927 \times 610 \times 429 \mathrm{~mm})$
$24^{\text {" Depth }}$	$13-1 / 2 \times 24 \times 22-7 / 8=4.2 \mathrm{cu} . \mathrm{ft}$. $(343 \times 603 \times 581 \mathrm{~mm})$	$36-1 / 2 \times 24 \times 22-7 / 8^{\prime \prime}=11.6 \mathrm{cu} . \mathrm{ft}$. $(927 \times 603 \times 581 \mathrm{~mm})$

UTILITY REQUIREMENTS - Single

Compartment Model

Electricity (E)

120 Volt, $50 / 60 \mathrm{~Hz}, 1$-Phase, 7.0 Amps, 840 Watts; or
230 Volts, $50 / 60 \mathrm{~Hz}, 1$-Phase, 3.6 Amps, 869 Watts
CUSTOMER IS RESPONSIBLE FOR COMPLIANCE WITH APPLICABLE LOCAL AND NATIONAL CODES AND REGULATIONS.

Job:	18SHA11 ARMC Ambulatory Clinic		A13
Calc By:	ISG	Date:	

Reference listed equipment drawing for detailed installation specifications. Obtain this drawing from your STERIS Representative.

Equip. Dwg. No.	Equipment Drawing Title
$413726-638$	$30 \times 18 \times 74^{\prime \prime}$ Warming Cabinet Electric, Freestanding or Recessed Dual Compartment
$413726-640$	$30 \times 24 \times 74^{\prime \prime}$ Warming Cabinet Electric, Freestanding or Recessed Dual Compartment

SQI-B

Square Centrifugal

Inline

Belt Drive

STANDARD CONSTRUCTION FEATURES:
All aluminum wheel - Minimum 18 gauge Lorenized steel housing - Hinged access door sizes 90 thru 180-
Removable access door sizes 195 thru 402 -Straightening vanes - Bearings rated at $\mathbf{2 0 0 , 0 0 0}$ hours average life Adjustable pitch drives through 5 hp - All fans factory
adjusted to specified fan RPM.

Job:	18SHA11 ARMC Ambulatory Clinic		A14	
Calc By:	ISG	Date:		

Performance (*Bhp includes 7\% drive loss)

Qty	Catalog Number	Flow (CFM)	SP (inwc)	Fan RPM	Power* (HP)	FEG
1	165SQIB	3700	1.00	1617	1.75	56

Altitude (ft): 0 Temperature (F): 70
Motor Information
Dimensions (inches)

HP	RPM	Volts/Ph/Hz	Enclosure	FLA	Position	Mounted
2	1725	$208 / 1 / 60$	ODP -SE	13.2	$3: 00$	Yes

Fan Information

Fan Mount	Access
Horz. Ceiling	9:00

Sound Data Inlet Sound Power by Octave Band

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	LwA	dBA	Sones
91	95	92	88	82	78	74	69	89	78	30

Accessories:

DRIVES (1.5 SF) @ 1617 RPM
GRAV DAMPER-165 SQI

Fan Curve Legend CFM vs SP (1617) MaxRPM(1833) MinRPM(771) CFM vs HP Point of Operation System Curve

Job:	18SHA11 ARMC Ambulatory Clinic	
A15		
	ISG	Date:

SQI-B

Square Centrifugal

Inline

Belt Drive

STANDARD CONSTRUCTION FEATURES:
All aluminum wheel - Minimum 18 gauge Lorenized steel housing - Hinged access door sizes 90 thru 180-
Removable access door sizes 195 thru 402 - Straightening vanes - Bearings rated at $\mathbf{2 0 0 , 0 0 0}$ hours average life Adjustable pitch drives through 5 hp - All fans factory adjusted to specified fan RPM.

Performance (*Bhp includes 5\% drive loss)

Qty	Catalog Number	Flow (CFM)	SP (inw)	Fan RPM	Power* (HP)	FEG
1	300 SQIB	14500	1.50	949	7.37	63

Altitude (ft): 0 Temperature (F): 70
Motor Information

HP	RPM	Volts/Ph/Hz	Enclosure	FLA	Position	Mounted
$7-1 / 2$	1725	$460 / 3 / 60$	ODP -PE	11	$3: 00$	Yes

NEMA Premium® efficiency motor per MG-1 (2014) Table 12-12
FLA based on NEC (2014) Table 430.250
Fan Information

Fan Mount	Access
Horz. Ceiling	9:00

Sound Data Inlet Sound Power by Octave Band

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	LwA	dBA	Sones
88	91	94	85	83	80	73	66	90	78	30

Accessories:

Premium Efficiency Motor (Min. 91.0\%)
DRIVES (1.5 SF) @ 949 RPM
REINFORCED WHEEL

Fan Curve Legend

CFM vs SP (949)	\square
MaxRPM(1041)	\square
MinRPM(366)	-
CFM vs HP	
Point of Operation	\bigcirc

Fan Curve

[^0]: Type of existing floor structure below
 Existing connections at bottom track are power-actuated fasteners (PAF)
 Spacing of existing PAF along bottom track (max)
 Number of existing PAF resisting reaction from equipment loads (distributed by backing \& bottom track)
 Existing shear demand at bottom of wall (based on 5 psf out-of-plane live load)
 Shear demand at bottom of wall from uniform wall loads (based on 5 psf out-of-plane live load)
 Additional shear demand from equipment only (based on Load Case 2)
 $=V_{\text {wall }}+V_{\text {equip }}$
 $0.157 " \phi$ Hilti X-U w/ 1" Embed (ICC ESR-2269)
 $=\mathrm{V}_{(\mathrm{E})} / \mathrm{V}^{\prime}{ }_{(\mathrm{E})} \leq 1.0$

