

February 21, 2019

STRUCTURAL DESIGN CALCULATIONS

Arrowhead Regional Medical Center Ambulatory Clinic

Spire Job #: 19SHA11 400 North Pepper Avenue Colton, CA 92324

TI-20	19-00049
Coun BL	ty of San Bernardino JILDING AND SAFETY
THESE AP	PLANS AND DETAILS ARE
THE APPRO BE CONSTI- VIOLATION THIS COUN By	DVAL OF THESE PLANS SHALL NOT RUED TO BE A PERMIT FOR ANY NOF ANY CODE OR ORDINANCE OF ITY Glee PLAN 06/13/2019
THESE PL ALL	ANS SHALL BE ON THE JOB FOR REQUESTED INSPECTIONS

Project Description:

Provide structural engineering services for the anchorage of miscellaneous equipment on the 2nd Floor of an existing 3-story building.

1

SP	RE
STRUCTURAL	ENGINEERING
	i n c

١

Job:	18SHA11 ARMC Ambulatory Clinic			
Calc By:	ISG	Date:	02/21/19	

Table of Contents

General:		Sheet
	Table of Contents	1
	USGS Design Maps Summary Report	2
	Non-Structural Component Seismic Design - Height Ratio (z/h)	3
	Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)	4
Equipment	Anchorage:	
	Suspended Ceiling Equipment - Single Procedure Light	5-6
	Wall Mounted Monitor - 29" TV on Peerless Bracket SA730P	7-8
	Wall Mounted Monitor - 40" TV on Peerless Bracket AT640	9-10
	Floor Mounted Equipment - Refrigerator (GE)	11-12
	Floor Mounted Equipment - Warming Cabinet (Steris)	13-14
	Wall Mounted Monitor - TV on Ergotron Bracket	15-16
	Suspended Ceiling Equipment - EF-1 & RF-1	17-18
	Typical Suspended Single Pipe and Conduit Support	1
	Typical Suspended Pipe and Conduit Trapeze Support	20
	Typical Wall-Mounted Pipe and Conduit Support	21-22
	Typical Wall-Mounted Equipment Anchorage	23-24
	Typical Unistrut Wall-Mounted Equipment Anchorage	25-26
Appendix A	: EASE Calcs (Reference Equipment Info)	A1-A15

Job:	18SHA11 ARMC Ambulatory Clinic			ि
Calc By:	ISG	Date:	02/21/19	2

OSHPD

Arrowhead Regional Ambulatory Clinic

400 N Pepper Ave, Colton, CA 92324, USA

Latitude, Longitude: 34.0740531, -117.3510590000002

Job:	18SHA11	18SHA11 ARMC Ambulatory Clinic			
Calc By:	ISG	Date:	02/21/19		

'19

3

Non-Structural Component Seismic Design - Height Ratio (z/h)

n _{top} =	3
Level ₁ =	2nd Floor
$Level_0 =$	1st Floor
Bsmt. =	No
Floor =	2nd Floor
Susp. =	Yes
Roof =	No

Top floor number First level above grade floor name? Ground level floor name? Basement? What floor is the project on? Suspended equipment? Rooftop equipment?

4

Job:	18SHA11 ARMC Ambulatory Clinic			
Calc By:	ISG	Date:	02/21/19	

Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)

Mark =	1			
Conc =	NWC			
Metal deck =	Yes			
f' _c =	4,000			psi
Anchor =	CS 3/8 (1 1/2)			
Steel Type =	Carbon			
d _o =	3/8			in
h _{ef} =	1 1/2			in
h =	2 3/4			in
h _{min} =	2 1/4			in
$\phi_s =$	0.75			
λ =	1.0			
k _{cr} =	17			
k _{cp} =	1			
N _{p,eq} =	NA			Lbs
N _{p,cr} =	NA			Lbs
N _b =	1,975			Lbs
s _{min} =	8			in
c _{min} =	16			in
A _n =	20			in ²
A _{no} =	20			in ²
N _{sa} =	6,500			lbs
V _{sa} =	2,180			lbs
φP _{n,conc} =	815			Lbs
$\phi V_{n,conc} =$	1,383			Lbs
φP _{n,steel} =	4,875			Lbs
φV _{n,steel} =	1,417			Lbs

Normal or lightweight concrete Concrete over metal deck? Concrete compressive strength Hilti KB-TZ anchor Carbon steel or Stainless steel Anchor O.D. Effective min anchor embedment Concrete thickness Min member thickness Seismic reduction per ACI Ch. 17 LWC reduction per ACI Ch. 17 Effectiveness factor Coefficient for pryout strength Adjusted by $(f_c/2500)^{0.5}$ Adjusted by $(f_c/2500)^{0.5}$ $= k_{cr} \cdot (f_c)^{0.5} \cdot h_{ef}^{1.5}$ Min anchor spacing Min. edge distance $= 3h_{ef} (min(1.5h_{ef},s/2)+min(1.5h_{ef},c))$ $= 9 \cdot h_{ef}^{2}$ Steel strength in tension Steel strength in shear $= \phi_s \lambda \phi_{t,conc} \cdot \min(N_{p,eq}, N_{p,cr}, N_b) \cdot (A_n/A_{no})$ = $\lambda \phi_{v,conc} \cdot k_{cp} \cdot N_b \cdot (A_n/A_{no})$ = $\phi_{t,steel} \cdot N_{sa}$

 $= \phi_{v,steel} \cdot V_{sa}$

$\phi_{t,conc} =$	0.55
$\phi_{v,conc} =$	0.70

Job:	18SHA11 ARMC Ambulatory Clinic			5
Calc By:	ISG	Date:	02/21/19	5

Job:	18SHA11 ARMC Ambulatory Clinic			6
Calc By:	ISG	Date:	02/21/19	0

Job:	18SHA11 ARMC Ambulatory Clinic			7
Calc By:	ISG	Date:	02/21/19	1

DETAIL

Job:	18SHA11 ARMC Ambulatory Clinic			0
Calc By:	ISG	Date:	02/21/19	C

Stud Wall Top & Bot Track Connections (ASD)

-Connected to a top and bottom track with 2- #10 SMS. Loads are minimal therefore ok by isnpection. -See A7/S601 for additional information.

SP	RΕ
STRUCTURAL	

A

Job:	18SHA11 ARMC Ambulatory Clinic			0
Calc By:	ISG	Date:	02/21/19	5

10

18SHA11 ARMC Ambulatory Clinic

Date:

02/21/19

			DETAIL
Wall Mo	ounted Monitor	- 42" TV on Peerless Bracket ST640	4/S301
STUD DESI	GN		R _{IDP} (MAX)
n _{stud} =	3	Number of studs engaged	
H _{stud} =	13.7 ft	Height of stud (maximum)	
H _{partial} =	9.5 ft	Height of stud (partial height wall)	Herus
W _{p,wall} =	8.0 psf	Unit wt of partition wall	
s _{stud} =	16 in	Stud spacing	
F _{ph} =	5.0 psf	= Max[(F_{ph})($W_{p,wall}$), 5psf min]	R _{EDT} (MAX)
w _{wall} =	6.7 plf/stud	$= F_{ph} \cdot (s_{stud}/12)$	
M =	2.3 kip-in		POR BOTTOM)
R _{TOP} =	55 lbs	$= w_{wall} \cdot H_{stud} / 2 + F_{ph} + (W_p + F_{pv}) \cdot (D/12) / H_{stud}$	
R _{BOT} =	55 lbs	$= w_{wall} \cdot H_{stud} / 2 + F_{ph} + (W_p + F_{pv}) \cdot (D/12) / H_{stud}$	
Stud =	400S125-54	(min)	
S _e =	0.361 in ³		
I _e =	0.830 in ⁴		
M' =	10.8 kip-in	$= S_e F_v / \Omega_b, \Omega_b = 1.67$	
$\Delta =$	0.31 in (L/522)	Maximum Deflection (Limit to L/120)	
	an 8 Det Treek Conne		
lop C	Connection: 0.157" Allin	X-U w/ 1" Embed (ICC ESR-2269) Above: NW(C o/ Mtl Deck
S _{top} –	24 111	Anchor spacing at top of wall	
n _{top} –	2		
V =	82 Lbs/anchor	$= R_{TOP} \cdot (I_{stud} / I_{top})$	
V' =	90 Lbs/anchor	Shear capacity (ASD)	
<u> Top C</u>	onnection: Braced		
s _{top} =	48 in	Brace spacing at top of wall	
n _{braces} =	2	Total number of braces engaged at top of wall	
V =	51 Lbs/brace	$= [w_{wall} \cdot H_{partial}/2 + 0.7F_{ph} + (W_p + 0.7F_{pv}) \cdot (D/12)/H_{partial}] \cdot (n_{stud}/n_{top})$	
Bottom C	connection: 0.157"o Hilti 2	X-U w/ 1" Embed (ICC ESR-2269) Below: NW(C o/ Mtl Deck
s _{bot} =	24 in	Anchors spacing at bottom of wall	
n _{bot} =	2	Total number of anchors engaged at bottom of wall	
V =	82 Lbs/anchor	$= R_{BOT} \cdot (n_{stud}/n_{bot})$	
V' =	90 Lbs/anchor	Shear capacity (ASD)	

Job:

Calc By:

STRUCTURAL

ENGINEERING

ISG

Job:	18SHA11	18SHA11 ARMC Ambulatory Clinic		
Calc By:	ISG	Date:	02/21/19	

Job:	18SHA11 ARMC Ambulatory Clinic			10
Calc By:	ISG	Date:	02/21/19	

DETAIL

Floor Mounted Equipment - Refrigerator (GE)

7/S301

Hilti KB-TZ Expansion Anchors: (ICC ESR-1917) Anchor Mark =

* See "Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)" calculation sheet for additional info.

3/8"¢ Hilti KB-TZ (Carbon Steel) w/ 1 1/2" Embedment

(Concrete tension capacity has been multiplied by 0.75 for seismic)

1 *

Anchor =	CS 3/8		
	Concrete	Steel	
φP _n =	815	4,875	Lbs
φV _n =	1,383	1,417	Lbs
$DCR_P =$	0.44	0.07	
DCR _V =	0.10	0.10	
		(DOD)5/	3 (54
DCR _{P+V} =	0.27	(DCR _{P,max}) ^{or}	~+ (DC

 $\Omega_{\rm o} {\sf P}_{\rm u} / \phi {\sf P}_{\rm n} \le 1.0$ $\Omega_{\rm o} V_{\rm u} / \phi V_{\rm n} \le 1.0$

 $(CR_{v,max})^{5/3} \le 1.0$

1	2
	J

02/21/19

18SHA11 ARMC Ambulatory Clinic

Date:

Job:

Calc By:

ISG

M_{u,angle} / ϕ M_{n,angle} ≤ 1.0

DCR

0.08 (OK)

Calc By: ISG Date: 02/21/19	11	18SHA11 ARMC Ambulatory Clinic			Job:
	14	02/21/19	Date:	ISG	Calc By:

DETAIL

Floor Mounted Equipment - Warming Cabinet (Steris)

8/S301

Hilti KB-TZ Expansion Anchors: (ICC ESR-1917) Anchor Mark =

* See "Anchorage to Topside of Concrete - Hilti KB-TZ (ESR-1917)" calculation sheet for additional info.

Anchor = CS 3/8 (1 1/2) Concrete Steel φP_n = 815 4,875 Lbs $\phi V_n =$ 1,383 1,417 Lbs DCR_P = 0.45 0.07 DCR_V = 0.08 0.08

(Concrete tension capacity has been multiplied by 0.75 for seismic)

1 *

 $\Omega_{\rm o} {\sf P}_{\rm u} / \phi {\sf P}_{\rm n} \le 1.0$ $\Omega_{\rm o}V_{\rm u}/\phi V_{\rm n} \leq 1.0$

 $DCR_{P+V} =$ $0.28 (\text{DCR}_{\text{P,max}})^{5/3} + (\text{DCR}_{\text{v,max}})^{5/3} \le 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic			15
Calc By:	ISG	Date:	02/21/19	15

Job:	18SHA11	ARMC Amb	oulatory Clinic	16
Calc By:	ISG	Date:	02/21/19	

Job:	18SHA11 ARMC Ambulatory Clinic			17
Calc By:	ISG	Date:	02/21/19	17

							DETAIL
	Susp	endec	l Ceiling Equ	lipmen	t- (EF-1 & RF-1)		See Mech Dwgs
Design =	City				F _{pv} = 0.27 W _{p (ULT)}	= 0.2S _{DS} ·W	p
S _{DS} =	1.35		See USGS sheet		F _{ph (MIN)} = 0.41 W _{p (ULT)}	= 0.3S _{DS} ·I _p ·	W _p
I _p =	1.0		ASCE 7 Table 11.5-1			= 0.4S _{DS} a	$\frac{p}{1+2z}$ W
Mark	Description					$(\mathbf{R}_{p}/\mathbf{I}_{p})$	$(1 h)^{n}$
EF-1	Exhaust Far	ı (Cook SQI	-B)			······	
RF-1	Exhaust Far	i (Cook SQI	-B)		$\square \square $		
Accumptions	9 Dimonoio						
Assumptions		RE-1		1	~	Ę.	¢.
Fauinment	Flexible	Flexible				171	T ' T
Isolators	Yes	Yes				L L L	8
a _p =	2.5	2.5			ASCE 7 Table 13.6-1		Fpv
R _p =	2.5	2.5			ASCE 7 Table 13.6-1		₽ I
Ω₀ =	2.5	2.5			ج	1	-
z/h	0.67	0.67			z = height of attachment		
F _{ph} =	1.26	1.26		W _{p (ULT)}	h = roof height		w E
W _p =	208	431		Lbs	Equipment weight	<u> </u>	
B =	24.8	47.4		in	Equipment width	* <u>SE</u>	CTION A-A
D =	32.9	52.5		in	Equipment depth		
H =	26.9	46.5		in	Equipment height		
CG =	13.5	23.3		in	Center of gravity (CG) height		
F _{ph} =	263	545		Lbs _(ULT)	Lateral seismic force		
$\Omega_{o} \cdot F_{ph} =$	657	1,362		Lbs _(ULT)	Lateral seismic force (w/ overstrengt	h factor)	
⊢ _{pv} =	56	116		Lbs (ULT)	Vertical sesimic force		
Equipment So	crew Conn t	o P1538A (I	Unistrut Angle) on Tra	oeze			
Screws	#12	#12]	Sheet metal screws (SMS)		
Stl. Gage	18 ga	18 ga			Base material thickness		
n _{conn} =	8	8			Number of screws to equipment (tota	al)	
V =	23	48		Lbs (ASD)	= 0.7F _{ph} /n _{conn}		
V' =	124	124		Lbs (ASD)	Screw shear capacity (SSMA Catalo	g pg. 60)	
T =	14	25		Lbs (ASD)	$= [0.7F_{ph} \cdot CG - (0.6W_p - 0.7F_{pv}) \cdot (min)$	(B,D)/2)] / (n	nin(B,D)∙n _{conn} /2)
T' =	263	263		Lbs (ASD)	Screw Pullout Capacity (SSMA Cata	log pg. 60)	
DCR =	0.24	0.48]	= V/V' + T/T' < 1.0		
Equipment S	oring Nut Co	onn to Trap	eze				
Diameter =	1/4	1/4		in	HHCS diameter		
n _{HHCS} =	4	4			Number of HHCS to unistrut (total)		
P =	29	49		Lbs (ASD)	= $[0.7F_{ph} \cdot CG - (0.6W_p - 0.7F_{pv}) \cdot (min)$	(B,D)/2)] / (n	nin(B,D)∙n _{conn} /2)
V =	46	95		Lbs (ASD)	= 0.7F _{ph} /n _{conn}		
P' =	600	600		Lbs (ASD)	Spring nut pull-out capacity	Å	1 2
V' =	300	300		Lbs (ASD)	Spring nut shear capacity		1
DCR =	0.20	0.40			= V/V' + T/T' < 1.0	, t⊥	<u></u>
Unistrut Trap	eze						
Unistrut =	P1000	P1000		1			
n _{trapeze} =	2	2			Total number of trapeze	0	•
L =	36	48		in (min)	Toal length of trapeze		
w =	41	64		plf	w = (W_p + 0.7 F_{pv}) / ($n_{trapeze} \times L$)		Ą
M =	556	1,537		Lb-in (ASD)		A LL	<u>_</u>
M' =	5,080	5,080		Lb-in (ASD)			
=	0.185	0.185		in ⁴		1	>
$\Delta =$	0.014	0.069		in	Total load deflection	REFLECTE	D PLAN @ EQUIP BASE
	L/2571	L/698		(L/240 Max))		

Job:	18SHA11	18SHA11 ARMC Ambulatory Clinic		
Calc By:	ISG	Date:	02/21/19	10

Suspended Ceiling Equipment- (EF-1 & RF-1)

DETAIL See Mech Dwgs

> 0.65 0.70 0.75 0.65

Vertical Hange	er Rod Des	ign (See Un	istrut Catalog, page 70	<u>))</u>			
Diameter =	1/2	1/2		in	Rod diameter		
s _{clip} =	12	12		in oc	Spacing of stiffener cra	adle clips	
%	100%	100%			Percentage of tensile of	apacity for compression	
n _{rods} =	4	4			Number of rods per tra	peze	
M =	2,478	8,864		Lb-in	Overturning moment	= 0.7F _{ph} ·CG	
T =	296	603		Lbs (ASD)	Rod tension	$= M/(2 \cdot min[B,D])+(W_p+0)$.7F _{pv})/n _{rods} + 0.7F _{ph}
T' =	1,350	1,350		Lbs (ASD)	Rod tensile capacity		
DCR _T =	0.22	0.45					
C =	213	430		Lbs (ASD)	Rod compression	= M/(2·min[B,D])+(0.7F _p	v-0.6W _p)/n _{rods} + 0.7F _{ph}
C' =	1,350	1,350		Lbs (ASD)	Rod compressive capa	icity	
DCR _c =	0.16	0.32					
Anchorage to	Underside	of Concrete	e - Hilti KB-TZ (ICC ESF	R-1917)			
Conc =	NWC	NWC] ,	Normal or lightweight of	oncrete MTL DECK	OR SLAB
Metal deck =	W2 Deck	W2 Deck			Concrete over metal de	eck?	
f' _c =	4,000	4,000		psi	Concrete compressive	strength	
Anchor =	CS 1/2 (3 1/4)	CS 1/2 (3 1/4)		ľ	Hilti KB-TZ anchor	•	<u>ک</u>
Steel Type =	Carbon	Carbon			Carbon steel or Stainle	ess steel	
d _o =	1/2	1/2		in	Anchor O.D.		<u>L</u>
h _{ef} =	3 1/4	3 1/4		in	Effective min anchor e	mbedment	¥
h =	4 3/4	4 3/4		in	Concrete thickness		
h _{min} =	4 5/8	4 5/8		in	Min member thickness		
φ _s =	0.75	0.75			Seismic reduction per	ACI App. D	
λ =	N/A	N/A			LWC reduction per AC	l App. D	
k _{cr} =	17	17			Effectiveness factor		
k _{cp} =	2	2			Coefficient for pryout s	trength	
N _{p,cr} ¹ =	3,025	3,025		Lbs			
N _b =	6,299	6,299		Lbs	$= k_{cr} \cdot (f_{c})^{0.5} \cdot h_{ef}^{1.5}$		
s _{min} =	9 3/4	9 3/4		in	Min anchor spacing		
c _{min} =	7 1/2	7 1/2		in	Min. edge distance		
A _n =	95	95		in ²	$= 3h_{ef} \cdot (min(1.5h_{ef},s/2)+$	·min(1.5h _{ef} ,c))	
A _{no} =	95	95		in ²	$= 9 \cdot h_{ef}^{2}$		
N _{sa} =	10,705	10,705		lbs	Steel strength in tension	n	
$V_{sa,eq}^2 =$	4,945	4,945		lbs	Steel strength in shear		
φP _{n,conc} =	1,475	1,475		Lbs	= $\phi_s \lambda \phi_{t,conc} \cdot min(N_{p,cr}, N_t)$)·(A _n /A _{no})	$\phi_{t,conc} = 0.6$
$\phi V_{n,conc} =$	N/A	N/A		Lbs	$= \lambda \phi_{v,conc} \cdot k_{cp} \cdot N_b \cdot (A_n / A_{nc})$)	$\phi_{v,conc} = 0.7$
			i i	1	NI		
φP _{n,steel} =	8,029	8,029		LDS	= $\phi_{t,steel} \cdot N_{sa}$		$\varphi_{t,steel} = 0.1$

 1 If anchor is into concrete over metal deck this value refers to " $N_{\text{p,deck,cr}}$ " 2 If anchor is into concrete over metal deck this value refers to $"V_{sa,deck,eq}"$

Vertical Hanger Anchorage (Hilti KB-TZ, ICC ESR-1917)

n =	1	2		(min)
$\Omega_{o} \cdot P_{u} =$	778	802		Lbs (ULT)
$DCR_{P,conc} =$	0.53	0.54		
$DCR_{P,steel} =$	0.10	0.10		

Cable Bracing Design

Diameter =	1/8	1/8		in
T =	260	539		Lbs (ASD)
T' =	1,000	1,000		Lbs (ASD)
DCR =	0.26	0.54		

Brace Anchorage (Same anchor parameters as vertical anchor)

n =	1	2		(min)
$\Omega_{o} \cdot P_{u} =$	657	681		Lbs (ULT
$\Omega_{o} \cdot V_{u} =$	657	340		Lbs (ULT
DCR _{P,conc} =	0.45	0.46		
DCR _{V,conc} =	N/A	N/A		
DCR _{P,steel} =	0.08	0.08		
DCR _{V,steel} =	0.20	0.11		
DCR _{P+V} =	0.33	0.30		

Total number of anchors Tension = $(\Omega_o \cdot F_{ph} \cdot CG/(2 \cdot min[B,D]) + 1.2W_p + F_{pv})/n_{rods} + \Omega_o \cdot F_{ph}$ $\Omega_{\rm o} {\rm P}_{\rm u} / \phi {\rm P}_{\rm n,conc} \le 1.0$

Prestretched Aircraft cable diameter Tension per cable = $(0.7F_{ph}) \cdot 2^{0.5}$

 $\Omega_{\rm o} P_{\rm u} / \phi P_{\rm n,steel} \le 1.0$

Per ASHRAE

 $max[DCR_{P,conc}, DCR_{P,steel}]^{5/3} + max[DCR_{V,conc}, DCR_{V,steel}]^{5/3} \le 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic			10
Calc By:	ISG	Date:	02/21/19	19

Job:	18SHA11	20		
Calc By:	ISG	Date:	02/21/19	20

		٦
STRUCTURAL	ENGINEERIN	G

Job:	18SHA11 ARMC Ambulatory Clinic			21
Calc By:	ISG	Date:	02/21/19	

			DETAIL
Т	ypical Wall-N	Nounted Pipe/Conduit Unistrut Support	10/S101
Seismic Input		_	(ASD)
Design = C	Sity		
a _p =	2.5	ASCE 7 Tables 13.5-1	
R _p =	6.0	and 13.6-1	
S _{DS} =	1.35	See USGS sheet	
Ip =	1.00	ASCE 7 Table 11.5-1	_╡ ╫╶ ┶ ┼╴ ┶
z ₁ /h =	0.33	Floor below (2nd Floor)	
z ₂ /h =	0.67	Floor above (3rd Floor)	
Weight & Dime	ensions		
W _{pipes} =	100 Lbs (max)	Total weight of pipes/conduit @ strut support	┽╵┼┼╶┿ ╎ エ │
W _{strut} =	5 Lbs (max)	Weight of strut support	
W _n =	105 Lbs (max)	Total weight (W _{pinge} + W _{etrut})	g
н́ =	24 in (min)	Distance between top & bottom screws	
D =	5 in (max)	Distance from face of wall to center of pipe/conduit	╡║_↓│↓
Seismic Force	is.		
Enh min =	0.41 W.	= 0.3Sps·la·Wa	. D .
F _{ab 1} =	0.37 W.	F _{nb} at floor below (z ₁ /h)	
F== a =	0.53 W.	F_{rb} at floor above (z_2/h)	
F _{nb} are =	0.45 W.	Average of F_+ 4 & F_+ 2	
F., =	0.45 W	Max of February & February	
F =	0.27 W	$= 0.2 S_{\text{pc}} \cdot W_{\text{p}}$	
F. =	47 l be	Unizontal solomic force	/\
' ph =	28 l be	Vertical seismic force	
pv —	20 203		
Screws into St	tud	n = <u>3</u> No. of screws at strut to stud (min)	
SMS =	1/4°¢	metal = 16 gal stude (min)	
V _{VERT} -	42 LDS	Shear per screw (vertical, gravity loads) $-(W_p + 0.7r_{pv}) \neq 0$	
V _{HORIZ} -	11 LDS	Snear per screw (norizontal, side-to-side) $= 0.7 \Gamma_{ph} \neq 11$	
P _{F-B} -	37 LDS	Tension per screw (front-to-back) = $(W_p + 0.7F_{pv}) \cdot D/H + 0.7F_{ph}/H$	
P _{S-S} =	26 Lbs	Tension per screw (side-to-side) = $(W_p + 0.7F_{pv}) \cdot D/H$	
V' _{VERT} =	613 Lbs	Screw shear capacity per SSMA allowable loads table, p.60	
V HORIZ =	613 Lbs	Screw shear capacity per SSMA allowable loads table, p.60	
	261 LDS	Screw pull-out capacity per SSIVIA allowable loads table, p.60	
	0.21 (OR)	$DCR = \max \left \left(\frac{VEKI}{V'_{VEPT}} + \frac{YEB}{P'} \right), \left(\frac{VEKI}{V'_{VEPT}} + \frac{YEBKI}{V'_{VEPT}} + \frac{YEBKI}{P'} \right) \right \le 1.0$	
Stud Design	10.7.6		Ann (1145)
⊓ _{stud} =	13.7 ft	Height of stud (maximum)	
n _{partial} =	9.5 ft	Height of stud (partial height wall)	
vv _{p,wall} =	8.0 pst	Unit wi or partition wall	
s _{stud} =	16 in	Stud spacing	Strate and a
Stud =	4005125-54 (min)	and the second	And the Horses
	0.301 In-	3111	41
	0.830 IN	- SE/0 0 -167	
M' =		$- S_{e} r_{y} s_{2b} + 1.07$	
U./F _{ph,wall} =	2.5 pst	= 0.7(0.45) VV _{p,wall}	Bar Basic
Live -	<u>5.0</u> psi	ma finderwood for many	and the second s
Load Case 1: (I	D+0.7E)	MAX MONENT MA	X 2ND REACTIONS
w _{wall} =	3.4 plf / stud	$= 0.7F_{ph,wall}(s_{stud}/12)$	IN THE IN BUTTLES
R _{TOP} =	60 Lbs / stud	$= w_{wall} H_{stud} / 2 + 0.7F_{ph} + (W_p + 0.7F_{pv}) (D/12) / H_{stud}$	
R _{PARTIAL} =	55 Lbs / stud	$= w_{wall} H_{partial} / 2 + 0.7F_{ph} + (W_p + 0.7F_{pv}) \cdot (D/12) / H_{partial}$	
R _{BOT} =	60 Lbs / stud	$= w_{wall} H_{stud}/2 + 0.7F_{ph} + (W_{p} + 0.7F_{pv}) (D/12)/H_{stud}$	
M =	2.6 kip-in	$= w_{wall} \cdot H_{stud}^{2}/8 + 0.7F_{ph} \cdot H_{stud}/4 + (W_{p}+0.7F_{pv}) \cdot (D/12)/2$	
DCR _M =	0.24 ≤ 1.0 (OK)	= M/M' ≤ 1.0	
$\Delta =$	0.24 in (L/694)	Maximum Deflection (Limit to L/120)	
Load Case 2: (I	D+L)		
w _{wall} =	6.7 plf / stud	= Live \cdot (s _{stud} /12)	
R _{TOP} =	49 Lbs / stud	$= w_{wall} \cdot H_{stud}/2 + W_p \cdot (D/12)/H_{stud}$	
R _{PARTIAL} =	36 Lbs / stud	$= w_{wall} \cdot H_{partial}/2 + W_{p} \cdot (D/12)/H_{partial}$	
R _{BOT} =	49 Lbs / stud	$= w_{wall} H_{stud}/2 + W_p (D/12)/H_{stud}$	
M =	2.1 kip-in	$= W_{wall} \cdot H_{stud}^{2}/8 + W_{p} \cdot (D/12)/2$	
DCR _M =	0.20 ≤ 1.0 (OK)	= M/M' ≤ 1.0	
$\Delta =$	0.22 in (L/754)	Maximum Deflection (Limit to L/120)	
- <u>-</u>			

Calc By: ISG Date: 02/21/19	Job:	18SHA11 ARMC Ambulatory Clinic			ົ່ງ
	Calc By:	ISG	Date:	02/21/19	

Typical Wall-Mounted Pipe/Conduit Unistrut Support

10/S101

Connections at Top Track of Full-Height Wall - Load Case 1: (D+0.7E) Governs

 $\mathbf{s}_{\text{brace}}$

n_{brace}

V_(5 psf) V_{wall}

V_{pipe} :

V_{brace} =

Type of existing floor/roof structure above Existing connections at top track are power-actuated fasteners (PAF)

Spacing of existing PAF along top track of full-height wall (max)

Number of existing PAF resisting out-of-plane reaction from pipe/conduit loads

Existing shear demand at top of wall (based on 5 psf out-of-plane live load)

Shear demand at top of wall from uniform wall loads (based on 2.5 psf out-of-plane seismic load)

- Additional shear demand from pipe/conduit only (based on Load Case 1)
- = V_{wall} + V_{pipe}

 $= V_{(E)}/V'_{(E)} \le 1.0$

Braces at Top Track of Partial-Height Wall - Load Case 1: (D+0.7E) Governs 48 in

Spacing of existing braces along top track of partial-height wall (max)

Number of existing braces resisting out-of-plane reaction at top track (min)

95 Lbs / brace Existing horizontal reaction force at brace (based on 5 psf out-of-plane live load)

48 Lbs / brace Horizontal reaction force at brace from uniform wall loads (based on 2.5 psf out-of-plane seismic load)

39 Lbs / brace Additional horizontal reaction force at brace from pipe/conduit only (based on Load Case 1)

87 Lbs / brace = V_{wall} + V_{pipe} 87 Lbs ≤ 95 Lbs (from 5 psf live), therefore braces are adequate by inspection

Connections at Bottom Track - Load Case 1: (D+0.7E) Governs

1

NWC	o/ Mtl Deck	
Conn _(E) =	PAF	
s _(E) =	24	in
n _(E) =	1	
V _(5 psf) =	68	Lbs / PAF
V _{wall} =	34	Lbs / PAF
V _{pipe} =	37	Lbs / PAF
V _(E) =	71	Lbs / PAF
V' _(E) =	90	Lbs
DCR =	0.79	≤ 1.0 (OK)

Type of existing floor structure below

Existing connections at bottom track are power-actuated fasteners (PAF)

Spacing of existing PAF along bottom track (max)

Number of existing PAF resisting out-of-plane reaction from pipe/conduit loads

Existing shear demand at bottom of wall (based on 5 psf out-of-plane live load)

Shear demand at bottom of wall from uniform wall loads (based on 2.5 psf out-of-plane seismic load)

Additional shear demand from pipe/conduit only (based on Load Case 1)

= V_{wall} + V_{pipe}

 $= V_{(E)}/V'_{(E)} \le 1.0$

SP	RE
STRUCTURAL	ENGINEERING
	inc

Job:	18SHA11	18SHA11 ARMC Ambulatory Clinic		
Calc By:	ISG	Date:	02/21/19	23

SP	RE
STRUCTURAL	ENGINEERING
	inc

Job:	18SHA11 ARMC Ambulatory Clinic			21
Calc By:	ISG	Date:	02/21/19	24

Typical Wall-Mounted Equipment (150 Lbs max)

DETAIL 12/S101

Connections at Top Track of Full-Height Wall - Load Case 2: (D+L) Governs

	at rop mao		
NWC	o/ Mtl Deck		Type of existing floor/roof structure above
onn _(E) =	PAF		Existing connections at top track are power-actuated fasteners (PAF)
s _(E) =	24	in	Spacing of existing PAF along top track of full-height wall (max)
n _(E) =	2		Number of existing PAF resisting reaction from equipment loads (distributed by backing & top track)
V _(5 psf) =	68	Lbs / PAF	Existing shear demand at top of wall (based on 5 psf out-of-plane live load)
V _{wall} =	68	Lbs / PAF	Shear demand at top of wall from uniform wall loads (based on 5 psf out-of-plane live load)
$V_{equip} =$	4	Lbs / PAF	Additional shear demand from equipment only (based on Load Case 2)
V _(E) =	72	Lbs / PAF	= V _{wall} + V _{equip}
V' _(E) =	90	Lbs	0.157"
DCR =	0.80	≤ 1.0 (OK)	$= V_{(E)}/V'_{(E)} \le 1.0$

Braces at Top Track of Partial-Height Wall - Load Case 2: (D+L) Governs

s _{brace} =	48	in
n _{brace} =	2	
V _(5 psf) =	95	Lbs / brace
V _{wall} =	48	Lbs / brace
V _{equip} =	30	Lbs / brace
V _{brace} =	78	Lbs / brace

С

s _{brace} =	48 in	Spacing of existing braces along top track of partial-height wall (max)
n _{brace} =	2	Number of existing braces supporting section of top track at equipment (min)
V _(5 psf) =	95 Lbs / brace	Existing horizontal reaction force at brace (based on 5 psf out-of-plane live load)
V _{wall} =	48 Lbs / brace	Horizontal reaction force at brace from uniform wall loads (based on 5 psf out-of-plane live load)
V _{equip} =	30 Lbs / brace	Additional horizontal reaction force at brace from equipment only (based on Load Case 2)
V _{brace} =	78 Lbs / brace	= V_{wall} + V_{equip} 78 Lbs ≤ 95 Lbs (from 5 psf live), therefore braces are adequate by inspection
Connections	s at Bottom Track - Load	Case 2: (D+L) Governs

NWC		
Conn _(E) =	PAF	
s _(E) =	24	in
n _(E) =	2	
V _(5 psf) =	68	Lbs / PAF
V _{wall} =	68	Lbs / PAF
V _{equip} =	4	Lbs / PAF
V _(E) =	72	Lbs / PAF
V' _(E) =	90	Lbs
DCR =	0.80	≤ 1.0 (OK)

Type of existing floor structure below Existing connections at bottom track are power-actuated fasteners (PAF) Spacing of existing PAF along bottom track (max) Number of existing PAF resisting reaction from equipment loads (distributed by backing & bottom track) Existing shear demand at bottom of wall (based on 5 psf out-of-plane live load) Shear demand at bottom of wall from uniform wall loads (based on 5 psf out-of-plane live load) Additional shear demand from equipment only (based on Load Case 2) = V_{wall} + V_{equip} $= V_{(E)}/V'_{(E)} \le 1.0$

Job:	18SHA11 ARMC Ambulatory Clinic		25	
Calc By:	ISG	Date:	02/21/19	20

		DETAIL
Typical Unistrut	Wall-Mounted Equipment (150 Lbs max)	13/S101
Seismic Input		(ASD)
Design = City	<i>★</i> D-	
a _p = 2.5	ASCE 7 Tables 13.5-1	∎∔⊷⊸
R _p = 6.0	and 13.6-1	
S _{DS} = 1.35	See USGS sheet	
I _p = 1.00	ASCE 7 Table 11.5-1	
$z_1/h = 0.33$	Floor below (2nd Floor)	
$z_2/h = 0.67$	Floor above (3rd Floor)	
Weight & Dimensions	¥ w,	
$W_p = 150 \text{ J bs (max)}$	Equipment weight	
$H = \frac{8.0}{100} \text{ in (min)}$	Height between top & bottom connections to backing	
B = 6.0 in (min)	Width between left and right connections to backing STUD WALL	
D = <u>8.0</u> in (max)	Depth to centroid	Ŷ
e = 1.6 in	Eccentricity from Unistrut	[HE_]
Seismic Forces		
$F_{ph,min} = 0.41 W_p$	$= 0.3S_{DS} \cdot I_p \cdot W_p$	e
F _{ph,1} = 0.37 W _p	F_{ph} at floor below (z ₁ /h) = $0.4S_{DS}a_p(1+2^{Z})_W$	
F _{ph,2} = 0.53 W _p	F_{ph} at floor above (z ₂ /h) $F_{ph} - \frac{R_p/I_p}{R_p/I_p} (\frac{1+2}{h})^{w_p}$	
$F_{ph,avg} = 0.45 W_p$	Average of F _{ph,1} & F _{ph,2}	€] B
$F_{ph} = 0.45 W_p$	Max of F _{ph,min} & F _{ph,avg}	elos.
$F_{pv} = 0.27 W_p$	$= 0.2S_{DS} \cdot W_{p}$	
$F_{ph} = 68$ Lbs	Horizontal seismic force	
$F_{pv} = 41$ Lbs	Vertical seismic force	
HHCS Equip Conn to Unistrut	$n_{HHCS} = 4$ No. of HHCS to Unistrut (F _u = 45 ksi, Ω = 2.5)	
Metal = 18 ga (min)	t = 0.0451 in Equipment metal thickness (min)	
d = <u>1/4</u> in	Bolt diameter	
m _f = 0.75	Modification factor per AISI Table E3.3.1-2	
C = 3.0	Bearing factor per AISI Table E3.3.1-1	
$V_{F-B} = 45$ Lbs	Shear per HHCS (front-to-back) = $(VV_p + 0.7F_{pv}) \div n_{HHCS}$	
$v_{s-s} = 46 LDs$	Snear per HHCS (side-to-side) = $[(W_p + 0.7F_{pv})^2 + 0.7F_{ph}]^{-3.5} + n_{HCS}$) (0)
$P_{F-B} = 101 \text{ LDs}$	Tension per HHCS (front-to-back) = $[(W_p + 0.7F_{pv})\cdot D/H + 0.7F_{ph}/2] + (n = 1(W_p + 0.7F_{pv})\cdot D/H + 0.7F_{ph}/2]$	$H_{\rm HCS}/2$
$F_{S-S} = 121 LDS$	Tension per HHCS (side-to-side) $= [(W_p + 0.7F_{pv})DH + 0.7F_{ph}DB] +$	(II _{HHCS} /Z)
$V_{\rm b} = \frac{302}{200}$	Shear capacity of fine and (AISI Eq. (2.3.1-1)) $= [4.2(1-0)^{-1}]_{U}$	
$P_{s} = \frac{300}{457}$ Lbs	Supression capacity of spring full connection to struct per offisition catalog Rearing capacity of metal (AISI Eqn. E3.3.1-1) = $[m_cC:d:t:E]/O$	
P' = 600 l bs	Pullout capacity of spring put connection to strut per Unistrut catalog	
DCR = 0.60 < 1.0 (OK)	= max[$V_{c,p}$ /min($V'_{b,p}$ $V'_{c,p}$) + $P_{c,p}$ /min($P'_{b,p}$ $P'_{c,p}$) $V_{c,p}$ /min($V'_{b,p}$ $V'_{c,p}$) + $P_{c,p}$ /min($P'_{b,p}$ $P'_{c,p}$)] ≤ 1	0
Screws into Metal Studs	n _{wall} = 12 No. of screws into metal studs (2 screws into each stud at ea	ach Unistrut)
$SMS = 1/4^{\circ}\phi$	Metal = 16 ga studs (min)	
	Shear per screw (front-to-back) = $(W_p + 0.7F_{py})^2 H_{wall}$	
$V_{S-S} = 15 LDS$	Snear per screw (side-to-side) = $[(W_p + 0.7F_{pv}) + 0.7F_{ph}] \div n_{wall}$ Tonsion per screw (front to back) = $[(W_p + 0.7F_{pv}) + 0.7F_{ph}]/H + 0.7F_{pr}/H$	÷ (n /2)
$P_{r,B} = \frac{40 \text{ LDs}}{40 \text{ LDs}}$	Tension per screw (ridit to side) = $[(W_p + 0.77_{pv})(D+e)/H + 0.77_{pv}/2]$	$(\Pi_{wall}/2)$
V' = 6131 bs	Screw shear capacity per SSMA allowable loads table in 90	
P' = 2611 bs	Screw null-out capacity per COMA allowable loads table, p.50	
DCR = 0.20 < 1.0 (OK)	= max[$V_{r,p}/V' + P_{r,p}/P'$]. $V_{s,p}/V' + P_{s,p}/P'$] ≤ 1.0	
	י טייט ייטיין שייו איין די	-
Stud Design		
	Hoight of study (maximum)	
$H_{max} = 0.5 \text{ ft}$	Height of stud (maximum)	퉈
		EL I
Saturd = 16 lin		Herus
Stud = 400S125-54		
$S_e = 0.361 \text{ in}^3$		
$I_{e} = 0.830 \ln^{4}$		
M' = 10.8 kip-in	$= S_e F_y / \Omega_b, \Omega_b = 1.67$	
0.7F _{ph,wall} = 2.5 psf	= 0.7(0.45) W _{p,wall} MAX MOMENT MAX E	ID REACTIONS
Live = 5.0 psf	Uniform live load on wall (CBC 1607.14)	TOP OR BOTTOM

3.4 plf / stud

42 Lbs / stud

0.17 in (L/966)

1.8 kip-in

Job:	18SHA11 ARMC Ambulatory Clinic		26	
Calc By:	ISG	Date:	02/21/19	20

Typical Unistrut Wall-Mounted Equipment (150 Lbs max)

DETAIL 13/S101

Load Case 1: (D+0.7E)

Wwall : R_{TOP}

RPARTIAL R_{BOT} =

DCR_M

= $0.7F_{ph,wall} \cdot (s_{stud}/12)$
--

42 Lbs / stud $= w_{wall} \cdot H_{stud}/2 + [0.7F_{ph} + (W_p + 0.7F_{pv}) \cdot (D/12)/H_{stud}] / n_{stud}$ 36 Lbs / stud

- = $w_{wall} \cdot H_{partial}/2 + [0.7F_{ph} + (W_p+0.7F_{pv}) \cdot (D/12)/H_{partial}] / n_{stud}$
- = $w_{wall} \cdot H_{stud}/2 + [0.7F_{ph} + (W_p+0.7F_{pv}) \cdot (D/12)/H_{stud}] / n_{stud}$
- $= w_{wall} \cdot H_{stud}^{2}/8 + [0.7F_{ph} \cdot H_{stud}/4 + (W_{p}+0.7F_{pv}) \cdot (D/12)/2] / n_{stud}$
- 0.17 ≤ 1.0 (OK) = M/M' ≤ 1.0

Maximum Deflection (Limit to L/120)

Δ = Load Case 2: (D+L)

M =

w _{wall} =	6.7	plf / stud	
R _{TOP} =	48	Lbs / stud	
R _{PARTIAL} =	35	Lbs / stud	
R _{BOT} =	48	Lbs / stud	
M =	2.1	kip-in	
DCR _M =	0.19	≤ 1.0 (OK)	
$\Delta =$	0.22	in (L/754)	

w _{wall} =	6.7	plf / stud	= Live \cdot (s _{stud} /12)
R _{TOP} =	48	Lbs / stud	$= w_{wall} \cdot H_{stud}/2 + V$
RTIAL =	35	Lbs / stud	= $w_{wall} \cdot H_{partial}/2+$
R _{BOT} =	48	Lbs / stud	$= w_{wall} \cdot H_{stud}/2 + V$
M =	2.1	kip-in	$= w_{wall} \cdot H_{stud}^2/8 +$
CR _M =	0.19	≤ 1.0 (OK)	= M/M' ≤ 1.0
Λ =	0.22	in (1/754)	Maximum Dofle

$w_{wall} \cdot H_{partial}/2 + W_p \cdot (D/12)/(H_{partial} \cdot n_{stud})$ $w_{wall} \cdot H_{stud}/2 + W_{p} \cdot (D/12)/(H_{stud} \cdot n_{stud})$

 $W_{wall} \cdot H_{stud}^2/8 + W_p \cdot (D/12)/(2 \cdot n_{stud})$

 $w_{wall} \cdot H_{stud}/2 + W_p \cdot (D/12)/(H_{stud} \cdot n_{stud})$

Maximum Deflection (Limit to L/120)

Connections at Top Track of Full-Height Wall - Load Case 2: (D+L) Governs

NWC		
Conn _(E) =	PAF	
s _(E) =	24	in
n _(E) =	2	
V _(5 psf) =	68	Lbs / PAF
V _{wall} =	68	Lbs / PAF
V _{equip} =	4	Lbs / PAF
V _(E) =	72	Lbs / PAF
V' _(E) =	90	Lbs
DCR =	0.80	≤ 1.0 (OK)

Type of existing floor/roof structure above Existing connections at top track are power-actuated fasteners (PAF) Spacing of existing PAF along top track of full-height wall (max) Number of existing PAF resisting reaction from equipment loads (distributed by backing & top track) Existing shear demand at top of wall (based on 5 psf out-of-plane live load) Shear demand at top of wall from uniform wall loads (based on 5 psf out-of-plane live load) Additional shear demand from equipment only (based on Load Case 2) = V_{wall} + V_{equip} = V_(E)/V'_(E) ≤ 1.0 Spacing of existing braces along top track of partial-height wall (max)

Braces at Top Track of Partial-Height Wall - Load Case 2: (D+L) Governs

s _{brace} =	48	in
n _{brace} =	2	
V _(5 psf) =	95	Lbs / brace
V _{wall} =	48	Lbs / brace
V _{equip} =	30	Lbs / brace
V _{brace} =	78	Lbs / brace

Number of existing braces supporting section of top track at equipment (min) Existing horizontal reaction force at brace (based on 5 psf out-of-plane live load) Horizontal reaction force at brace from uniform wall loads (based on 5 psf out-of-plane live load) Additional horizontal reaction force at brace from equipment only (based on Load Case 2) = V_{wall} + V_{equip} 78 Lbs ≤ 95 Lbs (from 5 psf live), therefore braces are adequate by inspection

Connections at Bottom Track - Load Case 2: (D+L) Governs

NWC		
Conn _(E) =	PAF	
s _(E) =	24	in
n _(E) =	2	
V _(5 psf) =	68	Lbs / PAF
V _{wall} =	68	Lbs / PAF
V _{equip} =	4	Lbs / PAF
V _(E) =	72	Lbs / PAF
V' _(E) =	90	Lbs
DCR =	0.80	≤ 1.0 (OK)

Type of existing floor structure below Existing connections at bottom track are power-actuated fasteners (PAF) Spacing of existing PAF along bottom track (max) Number of existing PAF resisting reaction from equipment loads (distributed by backing & bottom track) Existing shear demand at bottom of wall (based on 5 psf out-of-plane live load) Shear demand at bottom of wall from uniform wall loads (based on 5 psf out-of-plane live load) Additional shear demand from equipment only (based on Load Case 2) = V_{wall} + V_{equip}

 $= V_{(E)}/V'_{(E)} \le 1.0$

Job:	18SHA11 ARMC Amb		oulatory Clinic	<u>۸</u> ۵
Calc By:	ISG	Date:	02/21/19	AZ

Calc By: ISG Date: 02/21/19	٨٥	ulatory Clinic	ARMC Amb	18SHA11	Job:
	AS	02/21/19	Date:	ISG	Calc By:

WARRANTY: Limited 5-year

Sheet:

Model Numbers

SA730P SmartMount® Articulating Wall Mount for 10" to 29" Displays

Product Specifications

	DIMENSIONS (W x H x D) PRODUCT WEIGHT	LOAD CAPACITY	FINISH	AVAILABLE COLORS
SA730P	10.01" x 8.06" x 2.77"-16. (254 x 205 x 70-432mm	99" 3.55lb (1.61kg)	25lb (11kg)	Scratch Resistant Fused Epoxy	Semi-Gloss Black
Package Speci	fications				
	PACKAGE SIZE (W x H x D)	PACKAGE SHIP WEIGHT	PACKAGE UPC CODE	PACKAGE CONTEN	TS UNITS IN PACKAGE
SA730P	14.13" x 3.75" x 10.38" (358 x 95 x 263mm)	4.75lb (2.15kg)	735029237389	Wall Mount, Wall ar Display Installation Hardware, Installati Instructions	nd n 1
Accessories	ACC918: Security Fastene ACC2X1: VESA® 200 x 10 / models: AV Wall Shelves	rs Omm Adaptor Plate WSP7	IBA4-W: Easy Mount IBA5-W: Recessed L 700/WSP701: Metal Stud	Recessed Low Voltage Ca ow Voltage Media Plate wit Wall Plates for 16"/24" Cer	ble Plate :h Duplex Surge Suppressor nter Metal Studs
					All dimensions = inch (mm)
8.06" (205mm)	7.54" 192mm) 10.01" (254mm) TOP VIEW 3.94" (100mm) 2.95" (75mm) (75mm) (75mm) (75mm)	8.06" (205m) 3.96" 101mm)	(79mm) 6.50" (165mm) ALL PLATE DETAIL		3.99" 2mm)
				4 F \$	
	FRONT VIEW		SIDE VIEW COLLAPSED	SIDE VIEV +/-	W EXTENDED 35° TILT
Architect Spe	cifications				
The SmartMount® Art Assembly and installat	ticulating Wall Mount shall be a F tion shall be done according to i	Peerless-AV model SA730P and nstructions provided by the ma	d shall be located where indicat nufacturer.	ed on the plans.	
Visit peerless-av.com complete line of AV so Peerless-AV, including wireless, kiosks, digita mounts, projector mo and a full assortment	to see the polutions from 2300 WF Aurora, IL audio, displays, al audio, display of accessories. (800) 86 (630) 37 Fax: (800)	AV Peerless-AV ite Oak Circle Unit 3 Watfor .60502 USA Colonial Way, Herts, WD24 5-2112 United Kingdd 5-5100 +44 (0) 1923 0) 359-6500 Fax: +44 (0)	EMEA Peerless-AV L d Interchange Ave de las Indi Watford Parque Indust 4WP Escobedo, N.L pm Mexico 66062 200100 +52 (81) 83 1923 200101 Fax: +52 (81)	atin America Istrias 413 rial Escobedo 4.8300 8384-8360	echnology Through Innovation

LIT-1386 rev.2

© 2018 Peerless Industries, Inc. Peerless-AV® and SmartMount® are registered trademarks of Peerless Industries, Inc. All rights reserved.

Page 3 of 8

peerless-AV®

Job:	18SHA11	ARMC Amb	oulatory Clinic	۸7
Calc By:	ISG	Date:	02/21/19	A/

SmartMount® Universal Tilt Wall Mount | Peerless-AV

B2B (HTTPS://B2B.PEERLESS-

AV.COM/USER/LOGIN.ASPX?

Sma for 32 sku: s Pr 1 share: Certifica	tions: Image And A
California Residents:	pre information.
Name	Value
Minimum to Maximum Screen Size	32*to 50*
VESA Pattern	406-x 400
Weight Capacity	150/b (68.0kg)
Color	Black
Finish	Powder Coat
Distance from Wall	2.63 - 5.71" (67 - 145mm)
Increlock Increments	-5, 0, 5, 10, 15
Mounting Pattern	458 x 405mm (18.02 x 15.95")
Security Features	Security Hardware
Tilt	+15 / -5
Product Dimensions	21.69 X 10.71 X 2.95" (550 X 272 X 75mm)
Shipping Weight	7.82lb (7.82kg)
Ship Dimensions	10.71 x 2.95 x 21.69" (272.0 x 74.9 x 550.9mm)
UPC Code	735029235699

Job:	18SHA11	A 1 1		
Calc By:	ISG	Date:	02/21/19	AII

Corners and intersections on the face of the cabinet and door are structurally formed for rigidity, cleanability and

appearance. Both models are supported on a stainless-steel integral subbase. The cabinet doors are available in solid vinyl coated galvanized steel material with stainless steel inside and include optional tempered double pane glass window(s). Interior cabinet shelves (wire racks) are polyester powder coated steel. Interior air ducts and fan guards are flame retardant Acrylonitrile Butadiene Styrene (ABS) material. If a freestanding model, the cabinet top and side panels are vinyl coated galvanized steel.

Doors are of double-wall construction with 1-1/2" (38 mm) thick insulation between the walls. Right-hand door swing is provided; swing is reversible. Door closes against a heat-resistant, magnet-imbedded, vinyl gasket. Pivot type hinges are stainless steel.

Heating chamber compartment is insulated with 1" (25 mm) thick, fiberglass blanket. An impedance protected fan circulates air within the chamber to provide even heat distribution.

Lower chamber (dual-compartment model) includes two polyester powder coated steel wire rack shelves, adjustable in 3" (76 mm) increments. Door structure mounting, gasket and hinges are the same as the door on the upper chamber.

Chamber(s) is heated by an electric rod heater operating on 120 or 230 Volt, 50/60 Hz power.

Unit	Approx. Unit Wt. Ib (kg)
Single-Compa	rtment:*
18" (457 mm) Wall/Counter Mounting	131 (60)
18" (457 mm) Recess Mounting	105 (48)
24" (610 mm) Wall/Counter Mounting	142 (65)
24" (610 mm) Recess Mounting	115 (52)
Dual-Compar	tment:†
18" (457 mm) Open-Mounted	324 (147)
18" (457 mm) Recessed Mounting	288 (131)
24" (610 mm) Open-Mounted	375 (170)
24" (610 mm) Recessed Mounting	328 (149)
24" (610 mm) Mobile Base	483 (219)

ENGINEERING DATA

For glass door option, add 6 lb (2.7 kg).

For all glass door options except 18" (457 mm), add 14 lb (6 kg); for 18" (457 mm) glass door option, add 48 lb (22 kg).

CONTROLS

Cabinet controls are digital and similar for single- and dualcompartment configurations. Both controls have a Main Power on/off switch. The double cabinet control panel has control and temperature display functions for both cabinets. The upper cabinet control includes an on/standby key and digital temperature display. Also included is a °F/°C temperature display selection key and a SET temperature key with incremental raise/lower temperature set keys. LED lights indicate the on/standby status for cabinet heating, door ajar indication and SET selections have been made. The lower cabinet control includes an on/ standby switch and digital temperature display. The lower cabinet also includes a SET temperature set keys. Temperature control includes an on/ standby switch and digital temperature switch with incremental raise/lower temperature set keys. Temperature control lockout designates user adjustment.

The single cabinet control panel has control and temperature display functions including an on/standby switch, digital temperature display, °F/°C selection key and a SET temperature key with incremental raise/lower temperature set keys. LED lights indicate the on/standby status for cabinet heating, door ajar position and when SET selections have been made.

Upper compartment and single compartment controls include IV and IRR/Blanket mode setting switches, limiting temperature set ranges to 90-110°F (32.2-43.3°C) and 90-160°F (32.2-71.1°C), respectively. For lower compartment controls, the temperature selection range is 90-160°F (32.2-71.1°C).

Both controls monitor and regulate the heating of the interior compartment(s). The control for upper or single compartment ensures a temperature accuracy of $\pm 3^{\circ}$ F ($\pm 1.7^{\circ}$ C) when warming IV/irrigation solution. The control for lower compartment ensures a temperature accuracy of $\pm 5^{\circ}$ F ($\pm 2.8^{\circ}$ C) when warming irrigation solution.

An overtemperature alarm visually and audibly alerts operator should an overtemperature condition occur (chamber temperature greater than 10°F [5.5°C] above set temperature). In the event of an overtemperature condition, the overtemperature control automatically turns off the heater(s). An optional USB peripheral connection allows Customer to plug a PC or laptop computer into the warming cabinet to retrieve stored temperature data from control memory. The data is stored or printed from the computer. Data capture software for use on PC is provided with the warming cabinet.

MOUNTING ARRANGEMENT

Dual-compartment models may be installed as freestanding or recessing into a partition wall. If model is recess installed, a synthetic-rubber sealing gasket is provided to ensure close fit of cabinet front to the face of the wall partition. Recessed cabinet requires no supplementary supports behind the wall partition (except in seismic locations).

Single-compartment models may be installed freestanding on shelf or counter surfaces or recessed into a partition wall.

2

Job:	18SHA11	18SHA11 ARMC Ambulatory Clinic						
Calc By:	ISG	Date:	02/21/19	AIZ				

OPTIONS

Mobile base with bumpers (for dual 24" [610 mm] deep cabinets only). Casters are used to allow warming cabinet mobility. Press foot lever down to lock; push foot lever in to unlock.

USB port for temperature recording.

Electrical numeric keypad door locks are available for keyless entry.

PREVENTIVE MAINTENANCE

A global network of skilled service specialists can provide periodic inspections and adjustments to help ensure costeffective performance. STERIS representatives can provide information regarding annual maintenance agreements.

NOTES

- 1. Due to the variety of building constructions employed, fasteners for mounting cabinet to wall are not provided by STERIS. Wall(s) must be adequately reinforced to support operating weight of cabinet.
- 2. Customer must ensure warming cabinet is installed per applicable seismic requirements.

Unit	Upper Chamber Single Chamber Unit (Height x Width x Depth)	Lower Chamber Double Chamber Unit (Height x Width x Depth)
18" Depth	13-1/2 x 24 x 16-7/8" = 3.1 cu. ft. (343 x 610 x 429 mm)	36-1/2 x 24 x 16-7/8" = 8.5 cu. ft. (927 x 610 x 429 mm)
24" Depth	13-1/2 x 24 x 22-7/8 = 4.2 cu. ft. (343 x 603 x 581 mm)	36-1/2 x 24 x 22-7/8" ≠ 11.6 cu. ft. (927 x 603 x 581 mm)

INTERNAL DIMENSIONS AND CAPACITY

UTILITY REQUIREMENTS – Single Compartment Model

Electricity (E)

120 Volt, 50/60 Hz, 1-Phase, 7.0 Amps, 840 Watts; or 230 Volts, 50/60 Hz, 1-Phase, 3.6 Amps, 869 Watts

CUSTOMER IS RESPONSIBLE FOR COMPLIANCE WITH APPLICABLE LOCAL AND NATIONAL CODES AND REGULATIONS.

3

Job:	18SHA11	18SHA11 ARMC Ambulatory Clinic						
Calc By:	ISG	Date:	02/21/19	AIS				

Reference listed equipment drawing for detailed installation specifications. Obtain this drawing from your STERIS Representative.

Equip. Dwg. No.	lo. Equipment Drawing Title					
413726-638	30 x 18 x 74" Warming Cabinet Electric, Freestanding or Recessed Dual Compartment					
413726-640	30 x 24 x 74" Warming Cabinet Electric, Freestanding or Recessed Dual Compartment					

1.20 **Power**

.800 (HP)

Job: 18SHA11 ARMC Ambulatory Clinic A14 Date: 02/21/19 Calc By: ISG

MARK: EF-1 **PROJECT: COOK FANS** DATE: 1/10/2019

SQI-B Square Centrifugal

Inline **Belt Drive**

STANDARD CONSTRUCTION FEATURES:

All aluminum wheel - Minimum 18 gauge Lorenized steel housing - Hinged access door sizes 90 thru 180 -Removable access door sizes 195 thru 402 - Straightening vanes - Bearings rated at 200,000 hours average life -Adjustable pitch drives through 5 hp - All fans factory adjusted to specified fan RPM.

Perf	ormance	(*Bhp incl	udes 7%	drive lo	oss)			Dimensions (inches)
Qty 1	Catalog Number	Flow (CFM) 3700	SP (inwc) 1.00	Fan RPM 1617	Pow (HI	/er* P) FEG		A 23-13/16 B 25-5/16 C 27-3/4
Altit	ude (ft): () Tem	peratu	re (F): 70	-	J	D 26-15/16
Mot	or Inform	ation	porata)			E 14-5/16
ΗP	RPM Vol	ts/Ph/Hz	Enclo	osure	FLA	Position	Mounted	NOTE: Accessories may affect dimensions shown.
2	1725 20	08/1/60	ODP	-SE	13.2	3:00	Yes	Weight(Ibs)*** Shipping 310 Unit 208 ***Includes fan, motor & accessories.
FLAb	ased on NEC	C (2014) T	able 430.	248				
Fan	Informat	ion						
Fai	Mount	Access						
Hor	z. Ceiling	9:00						
Sou	nd Data	Inlet So	und Po	ower b	oy Oc	tave Ban	t	
1	2 3 4	56	7 8	LwA	dBA	Sones		
91	95 92 88	82 78	74 69	89	78	30		Fan Curve(MaxRPM Non-Reinforced Wheel = 1833)
Acc DI GI	essories: RIVES (1.5 RAV DAMI	SF) @ PER-165	1617 R	PM			Fan Cur CFM vs MaxRPM MinRPM CFM vs Point of System	2.40 1.60 9 1.80 1.20 1.20 0.60 0.60 0.60 0.00 0.00 1000 2000 3000 400 5P (1617) M(1833) M(771) 6 6 7 1000 2000 3000 4000 5000 Flow (CFM)
	v9.8.136.0							Page 1 of 2

Job: 18SHA11 ARMC Ambulatory Clinic A15 02/21/19 Calc By: ISG Date:

MARK: RF-1 **PROJECT: COOK FANS** DATE: 1/10/2019

SQI-B Square Centrifugal

Inline **Belt Drive**

STANDARD CONSTRUCTION FEATURES:

All aluminum wheel - Minimum 18 gauge Lorenized steel housing - Hinged access door sizes 90 thru 180 -Removable access door sizes 195 thru 402 - Straightening vanes - Bearings rated at 200,000 hours average life -Adjustable pitch drives through 5 hp - All fans factory adjusted to specified fan RPM.

Peri	for	mar	ice	(*Bh	p inc	lude	s 5%	drive lo	iss)							Dir
Qty	C N	Catal Numb	og ber	Fic (CF	ow FM)	s (in	SP wc)	Fan RPM	Pow (HF	er* ?)	FEG					A B
1	3	0050	λIΒ	14:	500	1.	.50	949	7.3	7	63					c
Altit Mot	ud or	le (ft Info	:): (rm) T atio	em n	ipe	ratu	re (F): 70							E
HF	,	RPM	ı v	olts	/Ph/	Hz	Enc	losur	e FL/	A P	ositio	n Mou	nted			NOT
7-1/	2	1725	;	460	/3/6	0	OD	P -PI	Ξ 11		3:00	Y	es			W
NEM.	A Pr	remiu ed on	m® (NEC	efficie C (20	ency 14) T	mot able	or per 430.	r MG-1 250	(2014)	Tab	le 12-12	•				
Fan	In	forn	nati	ion	,											
Fa	n N	loun	t /	Acc	ess											
Hor	z. (Ceilir	ng	9:0	00											
Sou	nd	l Dat	ta	Inle	t So	oun	d Po	ower b	y Oct	ave	Banc					
1	2	3	4	5	6	7	8	LwA	dBA	Soi	nes					
88	91	94	85	83	80	73	66	90	78	3	0					3.00
Acc Pi D R	es rem RIV EIN	nium /ES NFOF	es: Effi (1.5 RCE	cien SF D V	icy I) @ VHE	Moto 94 EL	or (N I9 Ri	lin. 91 PM	.0%)							2.40
															P (inwc)	1.80
)												Ś	1.20

Dir	nensions (i	nches)			
A	43-7/16				
в	47-13/16				
С	50-7/16				
D	46-1/2				
Е	17-1/2				
NOT	E: Accessories ma	ay affect dimensi	ions sh	own.	
W	eight(lbs)***	Shipping	615	Unit	431

cludes fan, motor & accessories.

v9.8.136.0

MaxRPM(1041) MinRPM(366)

CFM vs HP

System Curve