WARNING: ALL INDIVIDUALS INTERESTED IN BIDDING ON THIS PROJECT MUST OBTAIN THE FINAL PLANS AND SPECIFICATIONS FROM THE DEPARTMENT MANAGING THE PROJECT OR AS OTHERWISE STATED IN THE ADVERTISEMENT FOR **BIDS** FOR THE PROJECT. DO NOT USE THE PLANS AND SPECIFICATIONS POSTED THE CLERK OF THE BOARD'S ON WEBSITE FOR BIDDING ON THIS PROJECT.

Modern Custom Fabrication

COMPRESS Pressure Vessel Calculations

Description: SADDLE CALCS Project: 10K -D5 SUPERVAULT

Saddle #1

ASME Section VIII Division 1, 2001 Edition, A03 Addenda					
Saddle Material	SA	4 36			
Saddle Construction	Web at edge of rib				
Welded to Vessel	Yes				
Saddle Allowable Stress, S _s	23,7	60 psi			
Saddle Yield Stress, S _y	36,0	00 psi			
Foundation Allowable Stress	75	0 psi			
Design Pressure	Left Saddle	Right Saddle			
Operating	2.6	7 psi			
Test	4.3	3 psi			
Dimensio	ns				
Right saddle distance to datum	3	32"			
Tangent To Tangent Length, L	2	42"			
Saddle separation, L _s	1	78"			
Vessel Radius, R	64.3	3125"			
Tangent Distance Left, A _l	31"				
Tangent Distance Right, A _r	33"				
Saddle Height, H _s	68.3125"				
Saddle Contact Angle, θ	126°				
Web Plate Thickness, t _s	0,25"				
Base Plate Length, E	116.5625"				
Base Plate Width, F	11"				
Base Plate Thickness, t _b	0.75"				
Number of Stiffening Ribs, n	6				
Largest Stiffening Rib Spacing, d _i	23.0625"				
Stiffening Rib Thickness, t _w	0.25"				
Saddle Width, b	-	10"			
Reinforcing	Plate				
Thickness, t _p	0	.25"			
Width, W _p	1	6.5"			
Contact Angle, θ_w	138°				
Bolting	,				
Material	A	307			
Bolt Allowable Shear	10,000 psi				
Description	1" coarse threaded				
Corrosion on root	0"				
Anchor Bolts per Saddle	4				
Base coefficient of friction, µ	0	.45			
Hole Diameter	1.125"				

Slotted Hole in Which Saddle	Left Saddle				
Slotted Hole Length	1"				
Weight					
	Operating, Corroded Hydrotest				
Weight on Left Saddle	39,550 lb	45,256 lb			
Weight on Right Saddle	40,449 lb 46,285 lb				
Weight of Saddle Pair	1,294 lb				

Notes

(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick.

Stress Summary										
Land	Condition	Saddle	Bending + pressure between saddles (psi)				Bending + pressure at the saddle (psi)			
Load			S ₁ (+)	allow (+)	S ₁ (-)	allow (-)	S ₂ (+)	allow (+)	S ₂ (-)	allow (-)
Seismic Operating	Operating	Right Saddle	. <u>950</u>	27,840	<u>608</u>	7,027	-52	27,840	<u>-394</u>	7,027
	Operating	Left Saddle					288	27,840	-54	7,027
Wind	Operating	Right Saddle	798	27,840	456	7,027	14	27,840	-329	7,027
		Left Saddle					297	27,840	-45	7,027
	Test	Right Saddle	1,067	32,400	512	7,027	179	32,400	-376	7,027
		Left Saddle					503	32,400	-52	7,027
Weight	Operating	Right Saddle	796	23,200	444	5,856	<u>14</u>	23,200	-329	5,856
		Left Saddle	100				297	23,200	-45	5,856

Stress Summary											
	Condition	Saddle	Tangential shear (psi)		Circumferential stress (psi)			Stress over saddle (psi)		Splitting (psi)	
Load			S ₃	allow	S ₄ (horns)	S ₄ (Wear plate)	allow (+/-)	S ₅	allow	S ₆	allow
Seismic Operating	Operating	Right Saddle	<u>2,788</u>	18,560	<u>-19,916</u>	<u>-33,339</u>	34,800	<u>9,006</u>	18,000	<u>2,439</u>	15,840
	Operating	Left Saddle	2,776	18,560	-18,231	-30,389	34,800	8,806	18,000	2,385	15,840
Wind -	Operating	Right Saddle	2,010	18,560	-14,923	-24,980	34,800	6,748	18,000	1,828	15,840
		Left Saddle	2,081	18,560	-13,662	-22,773	34,800	6,599	18,000	1,787	15,840
	Test	Right Saddle	2,240	25,920	-16,756	-28,049	32,400	7,577	32,400	2,052	32,400
		Left Saddle	2,336	25,920	-15,339	-25,569	32,400	7,409	32,400	2,007	32,400
Weight	Operating	Right Saddle	1,936	18,560	-14,530	-24,323	34,800	6,571	18,000	1,780	15,840
		Left Saddle	2,026	18,560	-13,301	-22,171	34,800	6,425	18,000	1,740	15,840

Seismic base shear on vessel	
Vessel is assumed to be a rigid structure.	
Method of seismic analysis	IBC 2018 ground supported
Vertical seismic accelerations considered	Yes
Force Multiplier	0.3333
Minimum Weight Multiplier	0.2
Importance factor, I _e	1.25
Site Class	D
Short period spectral response acceleration as percent of g, S_{S}	63.2
1 second spectral response acceleration as percent of g, S_1	24.2
From ASCE Table 11.4-1, F _a	1.2944
From ASCE Table 11.4-2, F _v	1.4
Risk Category (IBC Table 1604.5)	Ш
Hazardous, toxic, or explosive contents	No
Equations	
$S_{MS} = F_a \cdot S_s$ $S_{M1} = F_v \cdot S_1$	
$S_{DS}=\left(rac{2}{3} ight)\cdot S_{MS}$	
$S_{D1}=\left(rac{2}{3} ight)\cdot S_{M1}$	
$F_p = 0.3 \cdot S_{DS} \cdot W \cdot I_e \cdot 0.7$	
Results	[
$S_{MS} = 1.2944 \cdot 0.632$	0.8181
$S_{M1} = 1.4 \cdot 0.242$	0.3388
$S_{DS}=\left(rac{2}{3} ight)\cdot 0.8181$	0.5454
$S_{D1} = \left(rac{2}{3} ight) \cdot 0.3388$	0.2259
Seismic Design Category (Section 11.6)	D
${F_p} = 0.3 \cdot 0.5454 \cdot 79{,}999 \cdot 1.25 \cdot 0.7$	11,452.71 lb _f

915.5 lb_f

 $V_{wt} = 16.72 \cdot 0.85 \cdot (0.57 \cdot 112.0229 + 2 \cdot 0.2778)$

Results

	Right Saddle	$V_{we} = 16.72 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 64.3125^{-2}}{144} + 2 \cdot 12.0398 ight)$	983.57 lb _f	
		$Q_t = rac{915.5\cdot 68.3125}{64.3125\cdot { m Sin}(126 \ / \ 2)}$	1,091.4 lb _f	
		$Q_l = \frac{983.57 \cdot 68.3125}{178}$	377.47 lb _f	
		$Q = 40,449 + \max{[1,091.4,377.47]}$	41,540.4 lb _f	
Operating		$V_{wt} = 16.72 \cdot 0.85 \cdot (0.57 \cdot 110.2364 + 2 \cdot 0.2778)$	901.03 lb _f	
	Left Saddle	$V_{we} = 16.72 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 64.3125^{-2}}{144} + 2 \cdot 12.0398 ight)$	983.57 lb _f	
		$Q_t = rac{901.03\cdot 68.3125}{64.3125\cdot { m Sin}(126\ /\ 2)}$	1,074.14 lb _f	
		$Q_l = \frac{983.57 \cdot 68.3125}{178}$	377.47 lb _f	O
		$Q = 39,550 + \max[1,074.14,377.47]$	40,624.14 lb _f	
	Right Saddle	$V_{wt} = 5.52 \cdot 0.85 \cdot (0.57 \cdot 112.0229 + 2 \cdot 0.2778)$	302.12 lb _f	
		$V_{we} = 5.52 \cdot 0.85 \cdot \left(\frac{0.5 \cdot \pi \cdot 64.3125^{-2}}{144} + 2 \cdot 12.0398\right)$	324.58 lb _f	
		$Q_t = rac{302.12\cdot 68.3125}{64.3125\cdot \sin(126\ /\ 2)}$	360.16 lb _f	
		$Q_l = rac{324.58\cdot 68.3125}{178}$	124.57 lb _f	
Test		$Q = 46,285 + \max[360.16,124.57]$	46,645.16 lb _f	
lest	Left Saddle	$V_{wt} = 5.52 \cdot 0.85 \cdot (0.57 \cdot 110.2364 + 2 \cdot 0.2778)$	297.34 lb _f	
		$V_{we} = 5.52 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 64.3125^{-2}}{144} + 2 \cdot 12.0398 ight)$	324.58 lb _f	
		$Q_t = rac{297.34.68.3125}{64.3125 \cdot \sin(126 \ / \ 2)}$	354.47 lb _f	
		$Q_l = \frac{324.58.68.3125}{178}$	124.57 lb _f	
		$Q = 45,256 + \max[354.47,124.57]$	45,610.47 lb _f	

Longitudinal stress between saddles (Seismic, Operating, left saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.6001 \cdot 54,209.85 \cdot (242 \ / \ 12)}{\pi \cdot 64.1875^2 \cdot 0.25} = 608 \text{ psi}$$

$$S_p = rac{P \cdot R}{2 \cdot t} = rac{2.67 \cdot 64.0625}{2 \cdot 0.25} = 342$$
 psi

Maximum tensile stress $S_{1t} = S_1 + S_p = \underline{950}$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = \underline{608}$ psi

$$\label{eq:compressive} \begin{split} \text{Tensile stress is acceptable} & (\leq 1.2 \cdot S \cdot E = 27,\!840 \quad \text{psi}) \\ \text{Compressive stress is acceptable} & (\leq 1.2 \cdot S_c = 7,\!027 \quad \text{psi}) \end{split}$$

Longitudinal stress at the right saddle (Seismic, Operating)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 4.5678}{3} + 242 + \frac{2 \cdot 4.5678}{3} = 248.0903 \text{ in}$$

Seismic vertical acceleration coefficient $m = 1.397 \cdot 0.1432 = 0.2$

$$w = rac{W_t \cdot (1+m)}{L_e} = rac{79,999 \cdot (1+0.2)}{248.0903} = 386.95 ~ \mathrm{lb}_f/\mathrm{in}$$

Bending moment at the right saddle:

$$egin{aligned} M_q &= w \cdot \left(rac{2 \cdot H_r \cdot A_r}{3} + rac{A_r^2}{2} - rac{R^2 - H_r^2}{4}
ight) \ &= 386.95 \cdot \left(rac{2 \cdot 4.5678 \cdot 33}{3} + rac{33^2}{2} - rac{64.3125 \ ^2 - 4.5678 \ ^2}{4}
ight) \ &= -148,518.6 \ ext{ lb } f ext{-in} \end{aligned}$$

$$S_2 = \pm rac{M_q \cdot K_1{'}}{\pi \cdot R^2 \cdot t} = rac{-148,518.6 \cdot 8.5944}{\pi \cdot 64.1875^{-2} \cdot 0.25} = -394 \;\; \mathrm{psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{2.67 \cdot 64.0625}{2 \cdot 0.25} = 342$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = -52$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = -394$ psi

Tensile stress is acceptable ($\leq 1.2 \cdot S = 27.840~{
m psi}$)

Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 7,027$ psi)

Longitudinal stress at the right saddle (Weight, Operating)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 4.5678}{3} + 242 + \frac{2 \cdot 4.5678}{3} = 248.0903 \text{ in}$$
$$w = \frac{W_t}{3} = \frac{79,999}{3} = 322.46 \text{ lb} \epsilon/\text{in}$$

 L_e 248.0903 022.10 $M_{f/M}$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 322.46 \cdot \left(\frac{2 \cdot 4.5678 \cdot 33}{3} + \frac{33^2}{2} - \frac{64.3125 \cdot 2^2 - 4.5678 \cdot 2}{4}\right) \\ &= -123.765.5 \text{ lb t-in} \end{split}$$

$$S_2 \,=\, \pm \frac{M_q \cdot K_1{'}}{\pi \cdot R^2 \cdot t} \,= \frac{-123,765.5 \cdot 8.5944}{\pi \cdot 64.1875^{-2} \cdot 0.25} \,=\, -\, 329 \ \, \mathrm{psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{2.67 \cdot 64.0625}{2 \cdot 0.25} = 342$$
psi

Maximum tensile stress $S_{2t} = S_2 + S_p = 14$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = -329$ psi

Tensile stress is acceptable ($\leq S = 23,200$ psi)

Compressive stress is acceptable ($\leq S_c = 5{,}856~{
m psi})$

Tangential shear stress in the shell (right saddle, Seismic, Operating)

$$Q_{shear} = Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 55,442.08 - 386.95 \cdot \left(33 + \frac{2 \cdot 4.5678}{3}\right) = 41,494.36 \ \ \mathrm{lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.078 \cdot 41,494.36}{64.1875 \cdot 0.25} = \underline{2.788} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 18,560$ psi)

Circumferential stress at the right saddle horns (Seismic, Operating)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot (t+t_p) \cdot \left(b+1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot \left(t^2 + t_p^2\right)} \\ &= \frac{-55,442.08}{4 \cdot \left(0.25 + 0.25\right) \cdot \left(10 + 1.56 \cdot \sqrt{64.3125 \cdot 0.25}\right)} - \frac{12 \cdot 0.0129 \cdot 55,442.08 \cdot 64.1875}{242 \cdot \left(0.25 \cdot ^2 + 0.25 \cdot ^2\right)} \\ &= \frac{-19.916}{9} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 34{,}800$ psi)

Circumferential stress at the right saddle wear plate horns (Seismic, Operating)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-55,442.08}{4 \cdot 0.25 \cdot \left(10 + 1.56 \cdot \sqrt{64.3125 \cdot 0.25}\right)} - \frac{12 \cdot 0.0106 \cdot 55,442.08 \cdot 64.1875}{242 \cdot 0.25^2} \\ &= \underline{-33,339} \text{ psi} \end{split}$$

Circumferential stress at wear plate horns is acceptable ($\leq 1.5 \cdot S_a = 34{,}800~{
m psi}$)

Ring compression in shell over right saddle (Seismic, Operating)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s}+1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7388 \cdot 55,442.08}{(0.25+0.25) \cdot (0.25+1.56 \cdot \sqrt{64.3125 \cdot 0.5})}$$
$$= 9.006 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 18{,}000~{
m psi})$

Saddle splitting load (right, Seismic, Operating)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 3 \cdot 0.25 + 0.25 \cdot 16.5$$
 = 4.875 in²

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{0.2145 \cdot 55{,}442.08}{4.875} = rac{2.439}{2.439} \; \mathrm{psi}$$

Stress in saddle is acceptable $\bigg(\leq rac{2}{3} \cdot S_s = 15{,}840 \;\;\mathrm{psi} \bigg)$

Shear stress in anchor bolting, one end slotted

Maximum seismic or wind base shear = 11,452.71 lb_f

Thermal expansion base shear = $W \cdot \mu$ = 40,197*0.45 = 18,088.65 lb_f

Corroded root area for a 1" coarse threaded bolt $\,=0.551\,$ in 2 (4 per saddle)

Bolt shear stress = $\frac{18,088.65}{0.551 \cdot 1 \cdot 4} = 8,207$ psi

Anchor bolt stress is acceptable (≤ 10,000 psi)

Shear stress in anchor bolting, transverse

Maximum seismic or wind base shear = 11,452.71 lb _f

Corroded root area for a 1" coarse threaded bolt $\,= 0.551~{
m in}^2$ (4 per saddle)

Bolt shear stress =
$$\frac{11,452.71}{0.551 \cdot 2 \cdot 4} = 2,598$$
 psi

Anchor bolt stress is acceptable (≤ 10,000 psi)

Web plate buckling check (Escoe pg 251)

Allowable compressive stress $S_c = min(23,760, 3,942) = 3,942$ psi

$$S_c = \frac{K_i \cdot \pi^2 \cdot E}{12 \cdot \left(1 - 0.3^2\right) \cdot \left(\frac{d_i}{t_s}\right)^2} = \frac{1.28 \cdot \pi^2 \cdot 29\text{E} + 06}{12 \cdot \left(1 - 0.3^2\right) \cdot \left(\frac{23.0625}{0.25}\right)^2} = 3,942 \text{ psi}$$

Allowable compressive load on the saddle

$$b_e = \frac{d_i \cdot t_s}{(d_i \cdot t_s) + 2 \cdot t_w \cdot (b-1)} = \frac{23.0625 \cdot 0.25}{(23.0625 \cdot 0.25) + 2 \cdot 0.25 \cdot (10-1)} = 0.5616$$

 $F_b = n \cdot (A_s + 2 \cdot b_e \cdot t_s) \cdot S_c = 6 \cdot (2.4375 + 2 \cdot 0.5616 \cdot 0.25) \cdot 3,942 = 64,299.04 \ \text{ lb}_f$

Saddle loading of 56,089.08 lb_f is \leq F_b; satisfactory.

Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)

$$\sigma_b = \frac{V \cdot (H_s - x_o) \cdot y}{I} + \frac{Q}{A} = \frac{11,452.71 \cdot (68.3125 - 52.1145) \cdot 5.975}{196.32} + \frac{55,442.08}{43.2764} = 6,927 \text{ psi}$$

The primary bending + axial stress in the saddle $\leq S_s = 23,760$ psi; satisfactory.

Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes one saddle slotted)

$$\sigma_b = \frac{V \cdot (H_s - x_o) \cdot y}{I} + \frac{Q}{A} = \frac{29,541.36 \cdot (68.3125 - 52.1145) \cdot 5.975}{196.32} + \frac{54,209.85}{43.2764} = 15,816 \text{ psi}$$

The secondary bending + axial stress in the saddle $\leq 2^{*}S_{v} = 72,000$ psi; satisfactory.

Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where a = 23.0625, b = 10.75 in

$$t_b = \sqrt{rac{eta_1 \cdot q \cdot b^2}{1.5 \cdot S_a}} = \sqrt{rac{1.8979 \cdot 44 \cdot 10.75^{\;2}}{1.5 \cdot 23,760}} = 0.5189 \;\; {
m in}$$

The base plate thickness of 0.75 in is adequate.

Foundation bearing check

$$S_f = \frac{Q_{\text{max}}}{F \cdot E} = \frac{56,089.08}{11 \cdot 116.5625} = 44$$
 psi

Concrete bearing stress ≤ 750 psi ; satisfactory.