WARNING: ALL INDIVIDUALS INTERESTED IN BIDDING ON THIS PROJECT MUST OBTAIN THE FINAL PLANS AND SPECIFICATIONS FROM THE DEPARTMENT MANAGING THE PROJECT OR AS OTHERWISE STATED IN THE ADVERTISEMENT FOR BIDS FOR THE PROJECT. DO NOT USE THE PLANS AND SPECIFICATIONS POSTED ON THE CLERK OF THE BOARD'S WEBSITE FOR BIDDING ON THIS PROJECT.

# Modern Custom Fabrication COMPRESS Pressure Vessel Calculations 

Description: SADDLE CALCS<br>Project: 10K -D5 SUPERVAULT



| Saddle Material | SA 36 |
| :---: | :---: |
| Saddle Construction | Web at edge of rib |
| Welded to Vessel | Yes |
| Saddle Allowable Stress, $\mathbf{S}_{\mathbf{s}}$ | 23,760 psi |
| Saddle Yield Stress, $\mathbf{S}_{\mathbf{y}}$ | 36,000 psi |
| Foundation Allowable Stress | 750 psi |
| Design Pressure | Left Saddle Right Saddle |
| Operating | 2.67 psi |
| Test | 4.33 psi |
| Dimensions |  |
| Right saddle distance to datum | 32" |
| Tangent To Tangent Length, L | 242" |
| Saddle separation, $L_{s}$ | 178" |
| Vessel Radius, R | $64.3125{ }^{\prime \prime}$ |
| Tangent Distance Left, $\mathrm{A}_{\boldsymbol{I}}$ | 31" |
| Tangent Distance Right, $\mathrm{A}_{\mathbf{r}}$ | 33 " |
| Saddle Height, $\mathrm{H}_{\mathbf{s}}$ | $68.3125^{\prime \prime}$ |
| Saddle Contact Angle, $\theta$ | $126^{\circ}$ |
| Web Plate Thickness, $\mathbf{t}_{\mathbf{s}}$ | 0.25" |
| Base Plate Length, E | 116.5625" |
| Base Plate Width, F | 11" |
| Base Plate Thickness, $\mathrm{t}_{\mathrm{b}}$ | 0.75" |
| Number of Stiffening Ribs, n | 6 |
| Largest Stiffening Rib Spacing, $\mathrm{d}_{\mathbf{i}}$ | 23.0625" |
| Stiffening Rib Thickness, $\mathrm{t}_{\mathbf{w}}$ | 0.25" |
| Saddle Width, b | 10" |
| Reinforcing Plate |  |
| Thickness, $\mathbf{t}_{\mathbf{p}}$ | 0.25" |
| Width, $\mathrm{W}_{\mathrm{p}}$ | 16.5" |
| Contact Angle, $\theta_{\text {w }}$ | $138^{\circ}$ |
| Bolting |  |
| Material | A307 |
| Bolt Allowable Shear | 10,000 psi |
| Description | 1" coarse threaded |
| Corrosion on root | $0 "$ |
| Anchor Bolts per Saddle | 4 |
| Base coefficient of friction, $\mu$ | 0.45 |
| Hole Diameter | $1.125{ }^{\prime \prime}$ |


| Slotted Hole in Which Saddle | Left Saddle |  |
| :---: | :---: | :---: |
| Weight |  |  |
| Slotted Hole Length |  | Operating, <br> Corroded |
| Hydrotest |  |  |
| Weight on Left Saddle | $39,550 \mathrm{lb}$ | $45,256 \mathrm{lb}$ |
| Weight on Right Saddle | $40,449 \mathrm{lb}$ | $46,285 \mathrm{lb}$ |
| Weight of Saddle Pair | $1,294 \mathrm{lb}$ |  |

## Notes

(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick.

| Stress Summary |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Load | Condition | Saddle | Bending + pressure between saddles (psi) |  |  |  | Bending + pressure at the saddle (psi) |  |  |  |
|  |  |  | $\begin{aligned} & \mathrm{S}_{1} \\ & (+) \end{aligned}$ | allow (+) | $\begin{aligned} & S_{1} \\ & (-) \end{aligned}$ | allow <br> (-) | $\begin{aligned} & \mathrm{S}_{2} \\ & (+) \end{aligned}$ | allow (+) | $S_{2}$ <br> (-) | allow (-) |
| Seismic | Operating | Right Saddle | 950 | 27,840 | 608 | 7,027 | -52 | 27,840 | -394 | 7,027 |
|  |  | Left Saddle |  |  |  |  | 288 | 27,840 | -54 | 7,027 |
| Wind | Operating | Right Saddle | 798 | 27,840 | 456 | 7,027 | 14 | 27,840 | -329 | 7,027 |
|  |  | Left Saddle |  |  |  |  | 297 | 27,840 | -45 | 7,027 |
|  | Test | Right Saddle | 1,067 | 32,400 | $512$ | $7,027$ | 179 | 32,400 | -376 | 7,027 |
|  |  | Left Saddle |  |  |  |  | 503 | 32,400 | -52 | 7,027 |
| Weight | Operating | Right Saddle | 786 | 23,200 |  | $5,856$ | 14 | 23,200 | -329 | 5,856 |
|  |  | Left Saddle |  |  |  |  | 297 | 23,200 | -45 | 5,856 |


| Load | Condition | Saddle | Tangential shear (psi) |  | Circumferential stress (psi) |  |  | Stress over saddle (psi) |  | Splitting (psi) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{S}_{3}$ | allow | $S_{4}$ <br> (horns) |  | allow $(+/-)$ | $\mathrm{S}_{5}$ | allow | $\mathrm{S}_{6}$ | allow |
| Seismic | Operating | Right Saddle | 2,788 | 18,560 | -19,916 | -33,339 | 34,800 | 9,006 | 18,000 | 2,439 | 15,840 |
|  |  | Left Saddle | $\underline{2,776}$ | 18,560 | -18,231 | -30,389 | 34,800 | 8,806 | 18,000 | 2,385 | 15,840 |
| Wind | Operating | Right Saddle | 2,010 | 18,560 | -14,923 | -24,980 | 34,800 | 6,748 | 18,000 | 1,828 | 15,840 |
|  |  | Left Saddle | 2,081 | 18,560 | -13,662 | -22,773 | 34,800 | 6,599 | 18,000 | 1,787 | 15,840 |
|  | Test | Right Saddle | 2,240 | 25,920 | -16,756 | -28,049 | 32,400 | 7,577 | 32,400 | 2,052 | 32,400 |
|  |  | Left Saddle | 2,336 | 25,920 | -15,339 | -25,569 | 32,400 | 7,409 | 32,400 | 2,007 | 32,400 |
| Weight | Operating | Right Saddle | 1,936 | 18,560 | -14,530 | $-24,323$ | 34,800 | 6,571 | 18,000 | 1,780 | 15,840 |
|  |  | Left Saddle | 2,026 | 18,560 | -13,301 | -22,171 | 34,800 | 6,425 | 18,000 | 1,740 | 15,840 |


| Vessel is assumed to be a rigid structure. |  |
| :--- | :--- |
| Method of seismic analysis | IBC 2018 ground supported |
| Vertical seismic accelerations considered | 0.3333 |
| Force Multiplier | 0.2 |
| Minimum Weight Multiplier | 1.25 |
| Importance factor, $\mathrm{I}_{\mathrm{e}}$ | D |
| Site Class | 1.2944 |
| Short period spectral response acceleration as percent of $\mathrm{g}, \mathrm{S}_{\mathrm{s}}$ | 63.2 |
| 1 second spectral response acceleration as percent of $\mathrm{g}, \mathrm{S}_{1}$ | 24.2 |
| From ASCE Table 11.4-1, $\mathrm{F}_{\mathrm{a}}$ | 1.4 |
| From ASCE Table 11.4-2, $\mathrm{F}_{\mathrm{v}}$ | III |
| Risk Category (IBC Table 1604.5) | No |
| Hazardous, toxic, or explosive contents |  |

Equations

| $S_{M S}=F_{a} \cdot S_{s}$ |  |
| :--- | :--- |
| $S_{M 1}=F_{v} \cdot S_{1}$ |  |
| $S_{D S}=\left(\frac{2}{3}\right) \cdot S_{M S}$ |  |
| $S_{D 1}=\left(\frac{2}{3}\right) \cdot S_{M 1}$ |  |
| $F_{p}=0.3 \cdot S_{D S} \cdot W \cdot I_{e} \cdot 0.7$ | 0.8181 |
|  | Results |
| $S_{M S}=1.2944 \cdot 0.632$ | 0.3388 |
| $S_{M 1}=1.4 \cdot 0.242$ | 0.5454 |
| $S_{D S}=\left(\frac{2}{3}\right) \cdot 0.8181$ | 0.2259 |
| $S_{D 1}=\left(\frac{2}{3}\right) \cdot 0.3388$ | $11,452.71 \mathrm{lb}_{\mathrm{f}}$ |
| Seismic Design Category (Section 11.6) | D |
| $F_{p}=0.3 \cdot 0.5454 \cdot 79,999 \cdot 1.25 \cdot 0.7$ |  |


| $\mathrm{V}_{\mathrm{v}}=$ vertical seismic force acting on the saddle |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}=$ horizontal seismic shear acting on the saddle (worst case if not slotted) |  |  |  |
| Seismic longitudinal reaction, $\mathrm{Q}_{1}$ |  |  |  |
| Seismic transverse reaction, $\mathrm{Q}_{\mathrm{t}}$ |  |  |  |
| Equations |  |  |  |
| $Q_{l}=\frac{V \cdot H_{s}}{L_{s}}+V_{v}$ |  |  |  |
| $Q_{t}=\frac{V \cdot H_{s}}{R_{o} \cdot \operatorname{Sin}(\theta / 2)}+V_{v}$ |  |  |  |
| $Q=W+\max \left[Q_{t}, Q_{l}\right]$ |  |  |  |
| Results |  |  |  |
| Operating | Right Saddle | $Q_{l}=\frac{11,452.71 \cdot 68.3125}{178}+8,089.8$ | $12,485.1 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{t}=\frac{5,790.7 \cdot 68.3125}{64.3125 \cdot \operatorname{Sin}(126 / 2)}+8,089.8$ | $14,993.08 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q=40,449+\max [14,993.08,12,485.1]$ | $55,442.08 \mathrm{lb}_{f}$ |
|  | Left Saddle | $Q_{l}=\frac{11,452.71 \cdot 68.3125}{178}+7,910$ | 12,305.3 lbf |
|  |  | $Q_{t}=\frac{5,662 \cdot 68.3125}{64.3125 \cdot \operatorname{Sin}(126 / 2)}+7,910$ | $14,659.85 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q=39,550+\max [14,659.85,12,305.3]$ | $54,209.85 \mathrm{lb}_{\mathrm{f}}$ |

Saddle reactions due to weight + wind

| Wind transverse reaction, $Q_{t} \square$ |  |  |
| :---: | :---: | :---: |
| Wind pressure, $\mathrm{P}_{\mathrm{w}}$ |  | 16.7223 psf |
|  | Equations |  |
| $V_{w t}=P_{w} \cdot G \cdot\left(C_{f(\text { shell })} \cdot(\text { Projected shell area })+C_{f(\text { saddle })} \cdot(\text { Projected saddle area })\right)$ |  |  |
| $V_{w e}=P_{w} \cdot G \cdot\left(\frac{C_{f(\text { shell })} \cdot \pi \cdot R_{o}^{2}}{144}+C_{f(\text { saddle })} \cdot(\text { Projected saddle area })\right)$ |  |  |
| $Q_{t}=\frac{V_{w t} \cdot H_{s}}{R_{o} \cdot \operatorname{Sin}(\theta / 2)}$ |  |  |
| $Q_{l}=\frac{V_{w e} \cdot H_{s}}{L_{s}}$ |  |  |
| $Q=W+\max \left[Q_{t}, Q_{l}\right]$ |  |  |
| Results |  |  |
|  | $V_{w t}=16.72 \cdot 0.85 \cdot(0.57 \cdot 112.0229+2 \cdot 0.2778)$ | $915.5 \mathrm{lb}_{\mathrm{f}}$ |


| Operating | Right Saddle | $V_{w e}=16.72 \cdot 0.85 \cdot\left(\frac{0.5 \cdot \pi \cdot 64.3125^{2}}{144}+2 \cdot 12.0398\right)$ | $983.57 \mathrm{lb}_{\mathrm{f}}$ |
| :---: | :---: | :---: | :---: |
|  |  | $Q_{t}=\frac{915.5 \cdot 68.3125}{64.3125 \cdot \operatorname{Sin}(126 / 2)}$ | $1,091.4 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{l}=\frac{983.57 \cdot 68.3125}{178}$ | $377.47 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q=40,449+\max [1,091.4,377.47]$ | $41,540.4 \mathrm{lb}_{\mathrm{f}}$ |
|  | Left Saddle | $V_{w t}=16.72 \cdot 0.85 \cdot(0.57 \cdot 110.2364+2 \cdot 0.2778)$ | $901.03 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $V_{w e}=16.72 \cdot 0.85 \cdot\left(\frac{0.5 \cdot \pi \cdot 64.3125^{2}}{144}+2 \cdot 12.0398\right)$ | $983.57 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{t}=\frac{901.03 \cdot 68.3125}{64.3125 \cdot \operatorname{Sin}(126 / 2)}$ | $1,074.14 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{l}=\frac{983.57 \cdot 68.3125}{178}$ | 377.47 lb |
|  |  | $Q=39,550+\max [1,074.14,377.47]$ | $40,624.14 \mathrm{lb}_{\mathrm{f}}$ |
| Test | Right Saddle | $V_{u t}=5.52 \cdot 0.85 \cdot(0.57 \cdot 112.0229+2 \cdot 0.2778)$ | $302.12 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $V_{w e}=5.52 \cdot 0.85 \cdot\left(\frac{0.5 \cdot \pi \cdot 64.3125^{2}}{144}+2 \cdot 12.0398\right)$ | $324.58 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{t}=\frac{302.12 \cdot 68.3125}{64.3125 \cdot \operatorname{Sin}(126 / 2)}$ | $360.16 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{l}=\frac{324.58 \cdot 68.3125}{178}$ | $124.57 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q=46,285+\max [360.16,124.57]$ | $46,645.16 \mathrm{lb}_{\mathrm{f}}$ |
|  | Left Saddle | $V_{u t}=5.52 \cdot 0.85 \cdot(0.57 \cdot 110.2364+2 \cdot 0.2778)$ | $297.34 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $V_{w e}=5.52 \cdot 0.85 \cdot\left(\frac{0.5 \cdot \pi \cdot 64.3125^{2}}{144}+2 \cdot 12.0398\right)$ | $324.58 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{t}=\frac{297.34 \cdot 68.3125}{64.3125 \cdot \operatorname{Sin}(126 / 2)}$ | $354.47 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q_{l}=\frac{324.58 \cdot 68.3125}{178}$ | $124.57 \mathrm{lb}_{\mathrm{f}}$ |
|  |  | $Q=45,256+\max [354.47,124.57]$ | $45,610.47 \mathrm{lb}_{\mathrm{f}}$ |

Longitudinal stress between saddles (Seismic, Operating, left saddle loading and geometry govern)
$S_{1}= \pm \frac{3 \cdot K_{1} \cdot Q \cdot(L / 12)}{\pi \cdot R^{2} \cdot t}=\frac{3 \cdot 0.6001 \cdot 54,209.85 \cdot(242 / 12)}{\pi \cdot 64.1875^{2} \cdot 0.25}=608 \mathrm{psi}$
$S_{p}=\frac{P \cdot R}{2 \cdot t}=\frac{2.67 \cdot 64.0625}{2 \cdot 0.25}=342 \mathrm{psi}$

Maximum tensile stress $\mathrm{S}_{1 \mathrm{t}}=\mathrm{S}_{1}+\mathrm{S}_{\mathrm{p}}=\underline{950} \mathrm{psi}$
Maximum compressive stress (shut down) $S_{1 c}=S_{1}=\underline{608} \mathrm{psi}$
Tensile stress is acceptable ( $\leq 1.2 \cdot S \cdot E=27,840 \mathrm{psi}$ )
Compressive stress is acceptable ( $\leq 1.2 \cdot S_{c}=7,027 \mathrm{psi}$ )

## Longitudinal stress at the right saddle (Seismic, Operating)

$L_{e}=\frac{2 \cdot H_{l}}{3}+L+\frac{2 \cdot H_{r}}{3}=\frac{2 \cdot 4.5678}{3}+242+\frac{2 \cdot 4.5678}{3}=248.0903 \mathrm{in}$
Seismic vertical acceleration coefficient $m=1.397 \cdot 0.1432=0.2$
$w=\frac{W_{t} \cdot(1+m)}{L_{e}}=\frac{79,999 \cdot(1+0.2)}{248.0903}=386.95 \mathrm{lb}_{f} / \mathrm{in}$
Bending moment at the right saddle:
$M_{q}=w \cdot\left(\frac{2 \cdot H_{r} \cdot A_{r}}{3}+\frac{A_{r}^{2}}{2}-\frac{R^{2}-H_{r}^{2}}{4}\right)$
$=386.95 \cdot\left(\frac{2 \cdot 4.5678 \cdot 33}{3}+\frac{33^{2}}{2}-\frac{64.3125^{2}-4.5678^{2}}{4}\right)$
$=-148,518.6 \mathrm{lb}_{f}-\mathrm{in}$
$S_{2}= \pm \frac{M_{q} \cdot K_{1}{ }^{\prime}}{\pi \cdot R^{2} \cdot t}=\frac{-148,518.6 \cdot 8.5944}{\pi \cdot 64.1875^{2} \cdot 0.25}=-394 \mathrm{psi}$
$S_{p}=\frac{P \cdot R}{2 \cdot t}=\frac{2.67 \cdot 64.0625}{2 \cdot 0.25}=342 \mathrm{psi}$
Maximum tensile stress $S_{2 t}=S_{2}+S_{p}=-52 p s i$
Maximum compressive stress (shut down) $S_{2 c}=S_{2}=-394$ psi
Tensile stress is acceptable ( $\leq 1.2 \cdot S=27,840 \mathrm{psi}$ )
Compressive stress is acceptable ( $\leq 1.2 \cdot S_{c}=7,027 \mathrm{psi}$ )

## Longitudinal stress at the right saddle (Weight, Operating)

$L_{e}=\frac{2 \cdot H_{l}}{3}+L+\frac{2 \cdot H_{r}}{3}=\frac{2 \cdot 4.5678}{3}+242+\frac{2 \cdot 4.5678}{3}=248.0903 \mathrm{in}$
$w=\frac{W_{t}}{L_{e}}=\frac{79,999}{248.0903}=322.46 \mathrm{lb}_{f} / \mathrm{in}$
Bending moment at the right saddle:
$M_{q}=w \cdot\left(\frac{2 \cdot H_{r} \cdot A_{r}}{3}+\frac{A_{r}^{2}}{2}-\frac{R^{2}-H_{r}^{2}}{4}\right)$
$=322.46 \cdot\left(\frac{2 \cdot 4.5678 \cdot 33}{3}+\frac{33^{2}}{2}-\frac{64.3125^{2}-4.5678^{2}}{4}\right)$
$=-123,765.5 \mathrm{lb}_{f}-\mathrm{in}$
$S_{2}= \pm \frac{M_{q} \cdot K_{1}{ }^{\prime}}{\pi \cdot R^{2} \cdot t}=\frac{-123,765.5 \cdot 8.5944}{\pi \cdot 64.1875^{2} \cdot 0.25}=-329 \mathrm{psi}$
$S_{p}=\frac{P \cdot R}{2 \cdot t}=\frac{2.67 \cdot 64.0625}{2 \cdot 0.25}=342 \mathrm{psi}$

Maximum tensile stress $S_{2 t}=S_{2}+S_{p}=\underline{14} \mathrm{psi}$
Maximum compressive stress (shut down) $\mathrm{S}_{2 \mathrm{c}}=\mathrm{S}_{2}=-329 \mathrm{psi}$
Tensile stress is acceptable ( $\leq S=23,200 \mathrm{psi}$ )
Compressive stress is acceptable ( $\leq S_{c}=5,856 \mathrm{psi}$ )
Tangential shear stress in the shell (right saddle, Seismic, Operating)
$Q_{\text {shear }}=Q-w \cdot\left(A_{r}+\frac{2 \cdot H_{r}}{3}\right)=55,442.08-386.95 \cdot\left(33+\frac{2 \cdot 4.5678}{3}\right)=41,494.36 \mathrm{lb}_{f}$
$S_{3}=\frac{K_{2.2} \cdot Q_{\text {shear }}}{R \cdot t}=\frac{1.078 \cdot 41,494.36}{64.1875 \cdot 0.25}=\underline{2,788} \mathrm{psi}$
Tangential shear stress is acceptable ( $\leq 0.8 \cdot S=18,560 \mathrm{psi}$ )
Circumferential stress at the right saddle horns (Seismic, Operating)
$S_{4}=\frac{-Q}{4 \cdot\left(t+t_{p}\right) \cdot\left(b+1.56 \cdot \sqrt{R_{o} \cdot t}\right)}-\frac{12 \cdot K_{3} \cdot Q \cdot R}{L \cdot\left(t^{2}+t_{p}^{2}\right)}$
$=\frac{-55,442.08}{4 \cdot(0.25+0.25) \cdot(10+1.56 \cdot \sqrt{64.3125 \cdot 0.25})}-\frac{12 \cdot 0.0129 \cdot 55,442.08 \cdot 64.1875}{242 \cdot\left(0.25^{2}+0.25^{2}\right)}$
$=\underline{-19,916} \mathrm{psi}$

Circumferential stress at saddle horns is acceptable ( $\leq 1.5 \cdot S_{a}=34,800 \mathrm{psi}$ )
Circumferential stress at the right saddle wear plate horns (Seismic, Operating)
$S_{4}=\frac{-Q}{4 \cdot t \cdot\left(b+1.56 \cdot \sqrt{R_{o} \cdot t}\right)}-\frac{12 \cdot K_{3} \cdot Q \cdot R}{L \cdot t^{2}}$
$=\frac{-55,442.08}{4 \cdot 0.25 \cdot(10+1.56 \cdot \sqrt{64.3125 \cdot 0.25})}-\frac{12 \cdot 0.0106 \cdot 55,442.08 \cdot 64.1875}{242 \cdot 0.25^{2}}$
$=\underline{-33,339 \mathrm{psi}}$

Circumferential stress at wear plate horns is acceptable ( $\leq 1.5 \cdot S_{a}=34,800 \mathrm{psi}$ )
Ring compression in shell over right saddle (Seismic, Operating)
$S_{5}=\frac{K_{5} \cdot Q}{\left(t+t_{p}\right) \cdot\left(t_{s}+1.56 \cdot \sqrt{R_{o} \cdot t_{c}}\right)}$
$=\frac{0.7388 \cdot 55,442.08}{(0.25+0.25) \cdot(0.25+1.56 \cdot \sqrt{64.3125 \cdot 0.5})}$
$=\underline{9,006} \mathrm{psi}$
Ring compression in shell is acceptable ( $\leq 0.5 \cdot S_{y}=18,000 \mathrm{psi}$ )

## Saddle splitting load (right, Seismic, Operating)

Area resisting splitting force $=$ Web area + wear plate area
$A_{e}=H_{e f f} \cdot t_{s}+t_{p} \cdot W_{p}=3 \cdot 0.25+0.25 \cdot 16.5=4.875 \mathrm{in}^{2}$
$S_{6}=\frac{K_{8} \cdot Q}{A_{e}}=\frac{0.2145 \cdot 55,442.08}{4.875}=\underline{2,439} \mathrm{psi}$

Stress in saddle is acceptable $\left(\leq \frac{2}{3} \cdot S_{s}=15,840 \mathrm{psi}\right)$

Maximum seismic or wind base shear $=11,452.71 \mathrm{lb}_{f}$
Thermal expansion base shear $=W \cdot \mu=40,197^{*} 0.45=18,088.65 \mathrm{lb}_{f}$
Corroded root area for a $1^{\prime \prime}$ coarse threaded bolt $=0.551$ in $^{2}$ ( 4 per saddle )
Bolt shear stress $=\frac{18,088.65}{0.551 \cdot 1 \cdot 4}=8,207 \mathrm{psi}$
Anchor bolt stress is acceptable ( $\leq 10,000 \mathrm{psi}$ )

## Shear stress in anchor bolting, transverse

Maximum seismic or wind base shear $=11,452.71 \quad \mathrm{lb}_{f}$
Corroded root area for a $1^{\prime \prime}$ coarse threaded bolt $=0.551 \mathrm{in}^{2}$ ( 4 per saddle )
Bolt shear stress $=\frac{11,452.71}{0.551 \cdot 2 \cdot 4}=2,598 \mathrm{psi}$
Anchor bolt stress is acceptable ( $\leq 10,000 \mathrm{psi}$ )
Web plate buckling check (Escoe pg 251)
Allowable compressive stress $S_{C}=\min (23,760,3,942)=3,942 \mathrm{psi}$
$S_{c}=\frac{K_{i} \cdot \pi^{2} \cdot E}{12 \cdot\left(1-0.3^{2}\right) \cdot\left(\frac{d_{i}}{t_{s}}\right)^{2}}=\frac{1.28 \cdot \pi^{2} \cdot 29 \mathrm{E}+06}{12 \cdot\left(1-0.3^{2}\right) \cdot\left(\frac{23.0625}{0.25}\right)^{2}}=3,942 \mathrm{psi}$
Allowable compressive load on the saddle
$b_{e}=\frac{d_{i} \cdot t_{s}}{\left(d_{i} \cdot t_{s}\right)+2 \cdot t_{w} \cdot(b-1)}=\frac{23.0625 \cdot 0.25}{(23.0625 \cdot 0.25)+2 \cdot 0.25 \cdot(10-1)}=0.5616$
$F_{b}=n \cdot\left(A_{s}+2 \cdot b_{e} \cdot t_{s}\right) \cdot S_{c}=6 \cdot(2.4375+2 \cdot 0.5616 \cdot 0.25) \cdot 3,942=64,299.04 \mathrm{lb}_{f}$
Saddle loading of $56,089.08 \mathrm{lb}_{f}$ is $\leq \mathrm{F}_{\mathrm{b}}$; satisfactory.
Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)
$\sigma_{b}=\frac{V \cdot\left(H_{s}-x_{o}\right) \cdot y}{I}+\frac{Q}{A}=\frac{11,452.71 \cdot(68.3125-52.1145) \cdot 5.975}{196.32}+\frac{55,442.08}{43.2764}=6,927 \mathrm{psi}$
The primary bending + axial stress in the saddle $\leq S_{S}=23,760$ psi; satisfactory.
Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes one saddle slotted)
$\sigma_{b}=\frac{V \cdot\left(H_{s}-x_{o}\right) \cdot y}{I}+\frac{Q}{A}=\frac{29,541.36 \cdot(68.3125-52.1145) \cdot 5.975}{196.32}+\frac{54,209.85}{43.2764}=15,816 \mathrm{psi}$
The secondary bending + axial stress in the saddle $\leq 2^{*} \mathrm{~S}_{\mathrm{y}}=72,000$ psi; satisfactory.

## Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where $a=23.0625, b=10.75$ in
$t_{b}=\sqrt{\frac{\beta_{1} \cdot q \cdot b^{2}}{1.5 \cdot S_{a}}}=\sqrt{\frac{1.8979 \cdot 44 \cdot 10.75^{2}}{1.5 \cdot 23,760}}=0.5189 \mathrm{in}$
The base plate thickness of 0.75 in is adequate.

## Foundation bearing check

$S_{f}=\frac{Q_{\max }}{F \cdot E}=\frac{56,089.08}{11 \cdot 116.5625}=44 \mathrm{psi}$


